Trends in Modern Drug Discovery

Jörg Eder and Paul L. Herrling

1	The	Beginnings of Modern Drug Discovery	4
	1.1	Aspirin	5
	1.2	Ergotamine	6
	1.3	Penicillin	6
	1.4	Steroid Hormones	7
2	Whe	re Do Chemical Lead Structures Corne from Today?	8
	2.1	Origin of Libraries	8
	2.2	HTS	10
	2.3	FBS	10
	2.4	Rational Drug Design	11
	2.5	Target Family Knowledge	11
	2.6	In Silico Methods	11
	2.7	Biologics	12
3	Whe	re Do Targets Come from?	12
4	Char	ging Landscape of Academic and Pharmaceutical Research	14
	4.1	Laboratory Size	14
	4.2	Research Center Size and Distribution	16
	4.3	In-House and Outsourced Research, Academic Collaborations, and Consortia	17
	4.4	Me-Too Drugs vs. Medical Breakthrough	18
	4.5	Science Expertise and Culture at the Top	19
	4.6	Productivity	19
Ref	erenc	es	20

Functional Genomics in Pharmaceutical Drug Discovery

Robert Adams, Michael Steckel, and Barbara Nicke

1	Introduction	26
2	Types of RNAi Used in Screens	27
3	RNAi Screening Technologies	- 30
	3.1 Synthetic Lethality	33
	3.2 Assay Performance, Hit Identification, and Statistics in Plate-Based Screening	34
4	Addressing Off-Target Effects in RNAi Screens	34
5	CRISPR/Cas9 Target Screening	36
	Conclusion	
Ref	ferences	39

Emerging Target Families: Intractable Targets

Stefan Knapp

Contents

255200000000

1	The Concept of Druggability and Properties of Drug-Like Molecules	44
2	Example 1: Phosphatases, Classical Enzyme Targets with Low Druggability	46
3	Example 2: GTPases of the RAS Family	48
4	Example 3: Protein–Protein Interactions	50
Ref	ferences	54

In Vivo Target Validation Using Biological Molecules in Drug Development

Derek S. Sim and Katalin Kauser

1	Ideal Animal Disease Model for Target Validation	60
2	In Vivo Models for Target Validation	60
	2.1 Mammalian Models	60
	2.2 Nonmammalian Models	63
3	Biological Tools for Target Validation	64
	3.1 Biologic Approaches	64
	3.2 Genetic Approaches	65
4	Challenges in Target Validation and Clinical Translatability of Preclinical Model	66
	4.1 Translatability of Preclinical Animal Models: Hemophilia Mice as Examples	66
5	Conclusion	67
Ref	ferences	67

High-Throughput Synthesis of Diverse Compound Collections for Lead Discovery and Optimization

C. Rademacher and P.H. Seeberger

1	Introduction	74
2	Principles of High-Throughput Synthesis in Lead Generation and Optimization	76
3	Combinatorial Peptide Synthesis	77
	Automated Carbohydrate Synthesis	
5	Biology-Oriented Synthesis	82
6	Diversity-Oriented Synthesis	84
7	Target-Oriented Synthesis and Lead Optimization	86
8	Conclusion	86
Ref	erences	87

Sources for Leads: Natural Products and Libraries

Eric F. van Herwerden and Roderich D. Süssmuth

tion	92
Products	93
cent Examples of Natural Products in Drug Discovery	94
explored Sources of Natural Products	103
l Libraries and Privileged Structures	107
mbinatorial Chemistry	107
gment-Based Drug Discovery (FDBB)	109
versity-Oriented Synthesis (DOS)	111
vileged Structures	113
on	116
	118
	roducts ent Examples of Natural Products in Drug Discovery explored Sources of Natural Products Libraries and Privileged Structures nbinatorial Chemistry gment-Based Drug Discovery (FDBB) ersity-Oriented Synthesis (DOS) rileged Structures

New Compound Classes: Protein–Protein Interactions

C. Ottmann

1	Protein-Protein Interactions in Health and Disease	126
2	Physiological Regulation of PPIs	127
3	Small-Molecule Modulation of PPIs: Inhibition	127
4	Small-Molecule Stabilizers of PPIs	132
5	Conclusions and Outlook	133
Ref	References	

Using Cheminformatics in Drug Discovery

Michael S. Lawless, Marvin Waldman, Robert Fraczkiewicz, and Robert D. Clark

Contents

1	Introduction	140
2	Proof-of-Concept Target Selection	141
3	Design Strategy	142
4	Computational Methods	143
	4.1 Data Set	143
	4.2 Extracting Data from ChEMBL	143
5	Activity Cliff Detection and Matched Molecular Pair Analysis	145
6	Building Classification and Regression Models	148
7	Combinatorial Elaboration and Fragment Assembly	150
8	Virtual Library Creation by Combinatorial Enumeration	152
9	ADMET Risk [™]	152
10	Physicochemical and Biological Characterization	154
	10.1 COX-1 and COX-2 Assays	154
	10.2 Thermodynamic Aqueous Solubility Assay	154
	10.3 Stability in Human Liver Microsomes	154
	10.4 LogD Measurements	155
11	Analysis and Modeling Results	155
	11.1 Molecular Pair Analyses	155
	11.2 QSAR Model Generation	157
12	Scaffold Hopping	159
13	Combinatorial Library Generation	162
14	Candidate Selection	162
15	How Good Were Our Predictions?	165
16	Conclusion	167
Refe	rences	167

٠

Implementation and Use of State-of-the-Art, Cell-Based In Vitro Assays

Gernot Langer

1	Starting with a Short Historical Perspective	172
2	Scaling Down to Optimally Implement Robust and Reliable Test Systems	173
3	Working with Cells in a Miniaturised Format	175
4	Routine Cell Culture	175
5	Cells as Reagents (Frozen Cells)	176
6	Assay Culture Conditions	178
7	Cell-Based Assay Development	179
8	High Content Analysis: Getting the complete picture	185
Ref	erences	188

Translational In Vivo Models for Women's Health: The Nonhuman Primate Endometrium—A Predictive Model for Assessing Steroid Receptor Modulators

Ov Daniel Slayden

1	Introduction	192
2	Use of Artificial Cycles	193
3	Induction of Menstruation	193
4	Steroid Receptor Antagonists	194
5	Induction of Endometriosis	197
6	Conclusions	197
	ferences	

Predictive In Vivo Models for Oncology

Diana Behrens, Jana Rolff, and Jens Hoffmann

Contents

1	Introduction	204
2	Demands on Target Identification and Validation Models	204
3	Tumor Models in the Lead Identification and Optimization (LO) Process	207
4	Translational Research (TR) Process	208
5	Mouse and Rat Strains for Preclinical Oncology Research	209
6	Humanized Mice	211
7	Scopes of Patient-Derived Xenografts	211
8	Translational Preclinical Studies with PDX Can Identify Predictive Response Marker	213
9	Current Limitations	214
10	Outlook	215
Refe	rences	216

41

Translational In Vivo Models for Cardiovascular Diseases

Daniela Fliegner, Christoph Gerdes, Jörg Meding, and Johannes-Peter Stasch

1	Intro	duction	224
2	Anin	nal Models in Cardiovascular Diseases: The Demands on Target Identification,	
	Valio	lation Models, and the Translation	225
	2.1	Heart Failure	225
	2.2	HF Induced by Myocardial Infarction	225
	2.3	HF Induced by DOCA	226
	2.4	Pulmonary Hypertension	227
	2.5	Thrombotic Diseases	230
	2.6	Animal Models for Anticoagulation Testing	230
3	Conc	lusion and Limitations	232
Ref	erenc	es	232

Pharmacokinetics in Drug Discovery: An Exposure-Centred Approach to Optimising and Predicting Drug Efficacy and Safety

Andreas Reichel and Philip Lienau

1	Intro	duction	236		
2	Pharmacokinetics in Drug Discovery				
	2.1	Target Validation	239		
	2.2	Lead Generation	240		
	2.3	Lead Optimisation	243		
	2.4	Candidate Selection and Profiling	249		
3	Sum	mary and Outlook	255		
Ref	References				

Nonclinical Safety and Toxicology

Claudia Stark and Thomas Steger-Hartmann

1	Introduction	262		
2	Molecular Off-Target Interaction			
3	Genotoxicity	265		
4	General Toxicity			
5	Cardiovascular Effects and Cardiotoxicity			
6	Central Nervous Effects and Neurotoxicity			
7	Hepatotoxicity	270		
8	Renal Function and Nephrotoxicity	272		
9	Respiratory Function and Pulmonary Toxicity	272		
10	Developmental Toxicity	273		
11	Carcinogenicity	274		
12	Other Nonclinical Safety Aspects	274		
	12.1 Phototoxicity	274		
	12.2 Phospholipidosis	275		
	12.3 Mitochondrial Toxicity	276		
	12.4 Immunotoxicity	276		
13	Omics Technologies	277		
14	Exploratory Clinical Screening			
15				
Refe	References			

Impact of Biomarkers on Personalized Medicine

Patricia Carrigan and Thomas Krahn

1	Introduction		288
2	Biomarker Classification		
	2.1	Does This New Drug Hit the Planned Target?	2 9 0
	2.2	Is This Drug Safe?	290
	2.3	Is the Therapy More Effective in One Population?	291
	2.4	Does the Biomarker Predict Survival?	291
	2.5	Is This Biomarker Unique to Disease Status?	292
	2.6	Does This Biomarker Guide Treatment Decisions?	292
3	Biomarker Technologies		292
	3.1	Technology Trends and Applications	292
	3.2	Technologies Based on the Molecular Basis of Biomarker	293
	3.3	DNA Biomarkers	294
	3.4	RNA Biomarkers	295
	3.5	microRNA	295
	3.6	IncRNA	296
	3.7	Epigenetic Factors	297
	3.8	Protein Biomarker	297
	3.9	Immunoassays: Direct Use of Antibodies	298
	3.10	Mass Spectrometry Assays	298
	3.11	Autoantibodics	2 9 9
	3.12	Exosomes, Microvesicles	299
	3.13	Rare Cells, Immune Cells	300
4	De-r	isking Drug Development	300 302
5	Biomarkers and Companion Diagnostics		
	5.1	Biomarkers: Laboratory Developed Test or Companion Diagnostic	304
	5.2	Laboratory Developed Test and Companion Diagnostic Requirements	305
	5.3	Regulatory Authorities	307

Modeling and Simulation of In Vivo Drug Effects

Jörg Lippert, Rolf Burghaus, Lars Kuepfer, Bart Ploeger, Stephan Schaller, Walter Schmitt, and Stefan Willmann

1	Introduction	314
2	Modeling and Simulation Approaches	316
3	Representation of Biological and Pharmacological Complexity	319
	Applications of Modeling and Simulation to Situations with Limited Mechanistic	
	Understanding	323
	Conclusions	
Ref	References	