Contents

1	Nonlinear Observability and the Observer Design Problem		
	1.1	Observation Problem.	1
	1.2	Observability and Observer Design for Nonlinear Systems	5
		1.2.1 Some Notions of Observability	5
		1.2.2 Observer Design	7
	1.3	Organization of the Book	11
	Refer	ences	12
Par	t I N	formal Forms and Their Observers	
2	Intro	duction	17
	Refer	rences	19
3	State-Affine Normal Forms		
	3.1	Constant Linear Part: Luenberger Design	21
		3.1.1 A Hurwitz: Luenberger's Original Form.	21
		3.1.2 <i>H</i> Linear: $H(\xi, u) = C\xi$ with <i>C</i> Constant	22
	3.2	Time-Varying Linear Part: Kalman Design	22
	Refer	rences	26
4	Triangular Forms		
	4.1	Nominal Triangular Form: High-Gain Designs	29
		4.1.1 Lipschitz Triangular Form	30
		4.1.2 High-Gain Observer For a Non-Lipschitz Triangular	
		Form?	32
		4.1.3 Hölder Continuous Triangular Form	34
		4.1.4 Continuous Triangular Form	36
		4.1.5 Relaxation of Some Assumptions	39
	4.2	General Triangular Form: High-Gain-Kalman Design	41
	Refer	ences	43

110

113

Par	t II	Transformation into a Normal Form				
5	Intr	roduction	49			
6	Tra	Insformations into State-Affine Normal Forms	53			
	6.1	Linearization by Output Injection	53			
		6.1.1 Constant Linear Part	53			
		6.1.2 Time-Varying Linear Part	56			
	6.2	Transformation into Hurwitz Form	56			
		6.2.1 Luenberger Design for Autonomous Systems	57			
		6.2.2 Luenberger Design for Nonautonomous Systems	59			
	6.3	Examples	66			
		6.3.1 Linear Systems with Unknown Parameters	66			
		6.3.2 State-Affine Systems with Output Injection				
		and Polynomial Output	67			
		6.3.3 Non-holonomic Vehicle	69			
		6.3.4 Time-Varying Transformations for Autonomous				
		Systems	70			
	Refe	erences	71			
7	Tra	unsformation Into Triangular Forms	75			
	7.1	Lipschitz Triangular Form	75			
		7.1.1 Time-Varying Transformation	76			
		7.1.2 Stationary Transformation	78			
	7.2	Continuous Triangular Form	79			
		7.2.1 Existence of g_i Satisfying (7.6)	81			
		7.2.2 Lipschitzness of the Triangular Form	87			
		7.2.3 Back to Example 4.1	91			
	7.3	General Lipschitz Triangular Form	92			
	Refe	erences	94			
Post III Expression of the Dynamics of the Observer in the Surface						
	• 111	Coordinates				
8	Mo	tivation and Problem Statement.	99			
	8.1	Examples	100			
		8.1.1 Oscillator with Unknown Frequency	100			
		8.1.2 Bioreactor	103			
		8.1.3 General Idea	104			
	8.2	Problem Statement	105			
		8.2.1 Starting Point	105			
		8.2.2 A Sufficient Condition Allowing the Expression				
		of the Observer in the Given x-Coordinates	107			

Direct Construction of the Extended Diffeomorphism T_e ?

8.3

9 Around Problem 8.1: Augmenting an Injective Immersion						
	into a	Diffeomorphism	115			
	9.1	Submersion Case	116			
	9.2	The $\tilde{P}[d_{\xi}, d_x]$ Problem	118			
	9.3	Wazewski's Theorem	120			
	Refere	ences	123			
10	Arou	nd Problem 8.2: Image Extension of a Diffeomorphism	125			
	10.1	A Sufficient Condition	125			
	10.2	Explicit Diffeomorphism Construction for Part (a)				
		of Theorem 10.1	127			
	10.3	Application: Bioreactor	131			
	10.4	Conclusion	134			
	Refer	ences	135			
11	Gene	ralizations and Examples	137			
	11.1	Modifying T and φp given by Assumption 8.1	137			
		11.1.1 For Contractibility	138			
		11.1.2 For a Solvable $\tilde{P}[d_{\xi}, d_x]$ Problem	139			
		11.1.3 A Universal Complementation Method	142			
	11.2	A Global Example: Luenberger Design for the Oscillator	142			
	11.3	Generalization to a Time-Varying T	147			
		11.3.1 Partial Theoretical Justification	148			
		11.3.2 Application to Image-Based Aircraft Landing	149			
	Refer	ences	154			
Ар	pendix	A: Technical Lemmas	157			
Apr	oendix	B: Lyapunov Analysis for High-Gain Homogeneous				
		Observers.	167			
Appendix C: Injectivity Analysis for Nonlinear Luenberger						
		Designs	181			
Index						