Contents

Pref	ace			ix	
Ack	nowledg	gements		xiii	
Abo	ut the A	uthors		xv	
Cha	pter 1:	Introduc	tion	1	
1.1	Why S	Study Pho	otosynthesis?	1	
1.2	History			2	
	1.2.1	The disc	covery of photosynthesis	2	
	1.2.2	The concept of energy			
	1.2.3	Early research on photosynthesis			
		1.2.3.1	What absorbs the light for photosynthesis?	7	
		1.2.3.2	What goes in, and what comes out?	8	
		1.2.3.3	Which atoms go where? Is it possible		
			to answer this question?	10	
		1.2.3.4	How much light is required to drive		
			photosynthesis?	13	
Refe	rences			14	
Cha	pter 2:	The Phot	osynthetic Apparatus	17	
2.1	Introd	luction		17	
2.2	Chlore	oplasts		17	
2.3	Thylal	koid Men	brane and Photosynthetic		
	Protei	n Comple	exes	20	
2.4	Pigme	ents		23	
2.5	Lipids and Proteins				
2.6	Evolut			26	
Refe	rences			26	
Cha	pter 3:	Basics of	Photosynthesis: Light-Dependent Reactions	29	
3.1	Overv	iew: Harv	vesting Sunlight to Drive		
		Chemist	• •	29	
3.2	•				
3.3	Conversion of Light Energy into Chemical Energy				

	3.3.1 Primary photochemistry					
	3.3.2	Electron	n-transfer pathways	41		
		3.3.2.1	The "Z-scheme" of photosynthesis	41		
		3.3.2.2	Photosynthetic water oxidation			
			(oxygen evolution)	43		
		3.3.2.3	Unique role of bicarbonate in light-induced			
			reactions of PSII	44		
		3.3.2.4	Formation of reducing power	45		
	3.3.3	Proton-	transfer pathways and formation			
		of ATP	(photophosphorylation)	46		
Refe	rences			51		
Cha	pter 4:	Basics of	Photosynthesis: The Carbon Reactions	59		
4.1	C3 Ph	otosynthe	esis: The Calvin-Benson Cycle	59		
4.2	C4 Photosynthesis: The Hatch–Slack Pathway					
	Crassulacean Acid Metabolism					
4.4	Transl	Translocation and Biomass Production				
4.5	Altern	ate Pathy	vays and Evolution	74		
	rences			75		
Cha	pter 5:	Regulatio	on of Photosynthesis	81		
5.1	Backg	round		81		
5.2	÷	['ransition	18	82		
5.3	Safety	Valve: D	issipation of Electronic Energy			
	as Hea	nt ("Quer	nching")	86		
5.4	Xanth	ophyll C	ycles	87		
5.5	Reacti	ion Cente	ers as Sinks for Excess			
		tion Ene		90		
5.6	Quen	ching of	Chlorophyll Triplets	93		
5.7		ation of I		94		
5.8		~	tion of Certain Calvin-Benson			
		•	s by Thioredoxin	95		
5.9		Ų	ory Mechanisms Related			
	to Ph	otosynth	esis	96		

5.10	0 Leaf Movement		
5.11	Concluding Remarks	97	
Refe	rences	98	
Chaj	pter 6: Photosynthesis and Our Planet	107	
6.1	Oxygenation of the Earth's Atmosphere	107	
6.2	Protection: Ozone Was Formed From Oxygen		
	and It Protects Us From the UV Radiation	108	
6.3	Earth Temperature Over Time and the Effect		
	of the Biosphere on It		
	6.3.1 Influence of the Sun	110	
	6.3.2 Influence of the Earth's atmosphere	111	
6.4	Conclusion	115	
Refe	rences	117	
Chaj	pter 7: Anoxygenic Photosynthesis	123	
7.1	Introduction	123	
7.2	Anoxygenic Photosynthetic Organisms:		
	Their Reaction Centers and Pathways		
	for Carbon Assimilation	125	
7.3	Relation between the RCs of Anoxygenic		
	and Oxygenic Photosynthetic Organisms	127	
7.4	Photosynthetic N ₂ Assimilation	128	
7.5	Rhodopsin-Based Phototrophy	131	
Refe	rences	132	
Chaj	pter 8: The Past, Present and the Future	135	
8.1	Spread of Photosynthesis by Successive Endosymbiosis	135	
8.2	Adapting Photosynthesis that has Evolved Underwater		
	for Life on Land		
	8.2.1 Grana	141	
	8.2.2 Hormones	142	
	8.2.3 Stomata	143	
	8.2.4 Reaching for light	145	

		8.2.4.1	Evolution of trees	145			
		8.2.4.2	Cheating: Lianas (Climbers) and Epiphytes	145			
8.3	The Ro	The Role of Fungi					
8.4	Making More Photosynthesis More Biomass,						
	More Bioenergy, New Chemicals and Hydrogen			146			
• •			l: Classical breeding and genetic engineering	146			
			sion from C3 to C4 metabolism by genetic				
		enginee	ering	146			
	8.4.3	Cyanot	pacterial genes in higher plants	147			
	8.4.4	Improv	rement of RuBisCO	148			
	8.4.5	Photor	espiratory bypass	149			
	8.4.6	Photos	ynthetic H ₂ production	149			
	8.4. 7	Biofuel	s and other chemicals	152			
	8.4.8	Other i	improvements	152			
Ref	erences			153			
Ch	apter 9:	The Ulti	mate: Artificial Photosynthesis	165			
9.1	Objec	ctives and	d Approaches	165			
9.2	Wate	r Oxidati	on Coupled to Hydrogen Production:				
			imple, in Practice Not So Easy	166			
9.3			Carbon Dioxide	172			
9.4	Conc	lusions		176			
Re	ferences	5		177			
Inc	dex			183			