Contents

Preface		v
About the A	Author	vii
Chapter 1	DNA, Genes, Genomes and Plant Breeding	
	1.1. A Brief History of Genetics	1
	1.2. Deoxyribonucleic Acid (DNA)	3
	1.3. Genes	7
	1.4. Gene Expression	7
	1.5. Genomes	9
	1.6. Genetic Change	11
	1.7. Plant Breeding	11
	1.8. Modern Plant Breeding	15
	1.8.1. Wide and forced crossing and en	nbryo
	rescue	18
	1.8.2. Radiation and chemical mutager	iesis 19
	1.9. The Advent of Genetic Modification	
	and Genome Editing	20
Chapter 2	The Techniques of Plant Genetic Modification	
-	and Genome Editing	
	2.1. A Brief History of the Development	
	of Recombinant DNA Technology	24

x Contents

	2.2.	Agrobacterium Tumefaciens	26
	2.3.	Use of A. Tumefaciens in Plant Genetic	
		Modification	28
	2.4.	Transformation of Protoplasts	31
	2.5.	Particle Bombardment	32
	2.6.	Other Direct Gene Transfer Methods	34
	2.7.	Agrobacterium-mediated Transformation	
		Without Tissue Culture	34
	2.8.	Selectable Marker Genes	35
	2.9.	Visual/Scoreable Marker Genes	39
	2.10.	Design and Construction of Genes	
		for Introduction into Plants	42
	2.11.	Promoter Types	43
		2.11.1. The use of GM to characterise gene	
		promoters	46
	2.12.	Gene Over-expression and Silencing	48
	2.13.	Genome Editing	50
		2.13.1. Oligonucleotide-directed	
		mutagenesis (ODM)	51
		2.13.2. Sequence-specific nucleases:	
		Meganucleases, zinc finger nucleases,	
		TALENS and CRISPR-Cas9	53
Chapter 3	The	Use of Genetically Modified (GM) and	
	Genome-edited Crops in Agriculture		57
	3.1.	Why Use Genetic Modification (GM) or	
		Genome Editing in Plant Breeding?	57
	3.2.	Global Adoption Rates of GM Crops	59
	3.3.	First- and Second-generation GM Varieties	60
	3.4.	Slow-ripening Fruit	62
	3.5.	Herbicide Tolerance	65
		3.5.1. Glyphosate tolerance	66
		3.5.2. Gluphosinate tolerance	70
		3.5.3. Bromoxynil tolerance	70

	3.5.4. Combined glyphosate and dicamba	
	tolerance	71
	3.5.5. Herbicide tolerance through genome	
	editing	72
3.6.	Insect Resistance	73
	3.6.1. Bt cotton	74
	3.6.2. Bt maize	76
	3.6.3. Bt potato	79
3.7.	Virus Resistance	80
3.8.	Modified Oil Content	82
	3.8.1. High lauric acid oilseed rape	90
	3.8.2. High oleic acid soybean	91
	3.8.3. Long-chain polyunsaturated fatty acids	
	(LC-PUFAs)	92
	3.8.3.1. Engineering components of fish	
	oils into crop plants	93
3.9.	Modified Starch for Industrial Uses:	
	The Amflora Potato	95
	3.9.1. Modified starch through genome editing	97
3.10.	GM Crops for Biofuel	98
	3.10.1. High lysine maize	101
3.11.	Vitamin Content: Golden Rice and Other	
	Crops with Elevated Levels of β-Carotene	102
3.12.	Fungal and Oomycete Resistance	106
3.13.	Food Safety: Reducing the Potential	
	for Acrylamide Formation During	
	Cooking and Processing	109
	3.13.1. Targeting vacualar invertase by genome	
	editing	112
	Non-browning Apples and Mushrooms	113
3.15.	Drought, Heat and Cold Tolerance;	
	Climate Change	114
	Salt Tolerance	119
	Biopharming	122
	Removal of Allergens	128
3.19.	Conclusions	130

Chapter 4	Legis	lation Covering Genetically Modified (GM)	
-	-	s and Foods	131
	4.1.	Safety of Genetically Modified (GM) Plants	
		Grown in Containment	131
	4.2.	Safety of Field Releases of GM Plants	135
	4.3.	Safety of GM Foods	140
	4.4.	•	142
		4.4.1. Devolution of decision-making	
		to Member States	145
		4.4.2. Risk assessment of GM crops with	
		deliberately altered composition	146
	4.5.	Safety Assessment of GM Crops in the USA	148
	4.6.	Regulating Genome Editing	150
	4.7.	Labelling and Traceability Regulations	152
Chapter 5	Issue	es that Have Arisen in the GM Crop and	
_	Food	d Debate	157
	5.1.	Are GM Foods Safe?	164
	5.2.	Will Genetic Modification Produce New	
		Food Allergens?	165
	5.3.	Is it Ethical to Transfer Genes Between	
		Different Species? Are Cisgenics More	
		Acceptable than Transgenics?	167
	5.4.	Animal Studies	169
	5.5.	GM Crops 'Do Not Work'	170
	5.6.	Did Tryptophan Produced by Genetic	
		Modification Kill People?	171
	5.7.	The Monarch Butterfly	172
	5.8.	The Pusztai Affair	173
	5.9.	Alarm Caused by Contradictory Results	
		of Biosafety Studies	175
	5.10	0. 'Superweeds'	178
	5.1	1. Insect Resistance to Bt Crops	179
	5.12	2. Segregation of GM and Non-GM Crops:	
		Co-existence of GM and Organic Farming	181
	5.13	3. Antibiotic Resistance Marker Genes	182

5.14. Patenting	184
5.15. Loss of Genetic Diversity	186
5.16. The Dominance of Multinational Companies	186
5.17. The StarLink and ProdiGene Affairs	187
5.18. The Cauliflower Mosaic Virus 35S RNA Gene	
Promoter	189
5.19. Implications for Developing Countries	190
5.20. 'Terminator' Technology	192
5.21. Unintentional Releases	192
5.22. Asynchronous Approvals	194
5.23. The UK Farm-Scale Evaluations	194
5.24. Conclusions	196
	201

Index