INHALTSVERZEICHNIS

l.	Einl	eitung	und Vorbemerkungen zu einigen wichtigen Konzepten	1		
	1.1	Zum Ra	numbegriff	2		
	1.2	Zur St	ruktur des euklidischen Raumes	4		
	1.3	3 Die Zeit				
	1.4	Zuordn	Zuordnungen und Funktionen			
		1.4.1	Fahrpläne	7		
		1.4.2	Funktionen	8		
		1.4.3	Zahlenfolgen und Konvergenz	12		
		1.4.4	Stetigkeit einer Funktion	14		
		1.4.5	Differenzierbarkeit und Geschwindigkeit	16		
		1.4.6	Die Beschleunigung	19		
	1.5	Zur Fr	rage der Aquivalenz verschiedener Darstellungen	19		
		1.5.1	Elementare Abhängigkeiten	19		
		1.5.2	Umkehrbarkeit von "Zahlenfunktionen" und Wechsel			
			der unabhängigen Variable	22		
		1.5.2	Freie Wahl der unabhängigen Variable	26		
2.	Vekt	orrechr	nung und Kinematik des Massenpunktes im Raum	31		
2.1 Vektoralgebra			ralgebra	31		
		2.1.1	Punkte im euklidischen Raum und Ortsvektoren	31		
		2.1.2	Allgemeine Vektoren und lineare Vektorräume	35		
		2.1.3	Das Skalarprodukt zweier Vektoren	36		
		2.1.4	Lineare Unabhängigkeit, Dimension und kartesische			
			Koordinatensysteme	40		
			2.1.4.1 Lineare Unabhängigkeit und Dimension			
			eines Vektorraums	41		
			2.1.4.2 Orthonormale Basen und kartesische			
			Koordinatensysteme	43		
			2.1.4.3 Das Rechnen in Komponenten	45		

3.

	2.1.5	Vektorpr	odukte	46
		2.1.5.1	Das Kreuzprodukt	46
		2.1.5.2	Mehrfache Kreuzprodukte	50
		2.1.5.3	Das Spatprodukt	52
2.2	Vektor	analysis	I: Kurven und Bahnen	53
	2.2.1	Zur Begr	iffsbestimmung	53
	2.2.2	Differen	tiationsprozesse	56
		2.2.2.1	Differentiation einer Bahn nach	
			einem Parameter	56
		2.2.2.2	Differentiation von Produkten	56
		2.2.2.3	Geschwindigkeit und Beschleunigung	57
	2.2.3	Integrat	ionen mit Vektoren	58
		2.2.3.1	Integration von Bahnen	58
		2.2.3.2	Die Kurvenlänge	58
	2.2.4	Das begl	eitende Dreibein	62
		2.2.4.1	Der Tangentenvektor	62
		2.2.4.2	Normale und Binormale	63
		2.2.4.3	Die Frenetschen Formeln	64
	2.2.5	Beispiel	e	66
		2.2.5.1	Die Kreislinie	66
		2.2.5.2	Die Schraubenlinie	68
		2.2.5.3	Die gleichmäßige Bewegung auf dem Kreise .	70
		2.2.5.4	Die Tangential- und die Normal-	
			beschleunigung	70
2.3	Felder			71
	2.3.1	Stetigke	it und Differenzierbarkeit von Feldern	72
		2.3.1.1	Stetigkeit	72
		2.3.1.2	Differenzierbarkeit	74
		2.3.1.3	Heuristisches über Mannigfaltigkeiten	
			im Raum	79
		2.3.1.4	Der Begriff des Differentials	84
	2.3.2	Differen	tialformen und Kurvenintegrale	89
		2.3.2.1	Totale Differentiale und Differential-	
			formen	89
		2.3.2.2	Kurvenintegrale	92
Grur	nd legung	der Newt	onschen Mechanik	96
3.1 Ober Axiome und Prinzipien				96

	3.2	Die Nev	vtonsche Formulierung der Prinzipien der Mechanik	99
	3.3	Analyse	e und Konkretisierung von Newtons Aussagen	101
		3.3.1	Analyse der Aussagen I	101
		3.3.2	Bewegte Bezugssysteme	103
		3.3.3	Analyse der Aussagen II	109
	3.4	Zusamme	enstellung der Prinzipien der Mechanik	114
	3.5	Das Gri	undproblem der Mechanik	116
4.	Fund	amental	e Begriffe und Konzepte der Mechanik	118
	4.1	Abgesci	hlossene und offene Systeme	118
	4.2	Arbeit	, Leistung, Energie	120
		4.2.1	Das Kraftfeld	120
		4.2.2	Arbeit und Leistung	121
		4.2.3	Die kinetische Energie des Massenpunktes	122
		4.2.4	Konservative Kräfte und das Potential	123
		4.2.5	Die potentielle Energie und der Energiesatz	
			der Punktmechanik	124
	4.3	Drehmo	ment, Drehimpuls und Zentralkräfte	129
		4.3.1	Drehimpuls und Drehmoment	129
		4.3.2	Zentralkräfte	130
		4.3.3	Bedeutung der Drehimpulserhaltung für	
			die Bewegung	133
		4.3.4	Der Gesamtdrehimpuls von Systemen von	
			Massenpunkten	135
	4.4	Der Kr	aftstoß und Stoßgesetze	137
		4.4.1	Der Kraftstoβ	137
		4.4.2	Die Diracsche δ -Funktion	138
		4.4.3	Stoßgesetze	145
			4.4.3.1 Stoßkinematik des Zweierstoßes	145
	ι		4.4.3.2 Bedeutung von Stoßprozessen	
			in der Physik	155
5.	Eini	fache Be	ispiele für die Dynamik eines Massenpunktes	157
	5.1	Parall	ele Kraftfelder	157
		5.1.1	Das Schwerefeld	159
		5.1.2	Zwangskräfte I: Die Bewegung auf einer	
			Kurve im Schwerefeld	161
			5.1.2.1 Bewegung auf der Geraden und der	
			schiefen Ebene	163
			5.1.2.2 Bewegung auf dem vertikalen Kreis	165

	5.2	Reibungskräfte als dissipative Kräfte 16				
		5.2.1	Allgemeir	ne Beschreibung von Bewegungen		
			mit Reibu	ung	167	
		5.2.2	Ursachen	und spezielle Formen der Reibung	171	
		5.2.3	Beispiele	· · · · · · · · · · · · · · · · · · ·	174	
			5.2.3.1	Schiefe Rinne mit Coulomb-Reibung	174	
			5.2.3.2	Der lotrechte Fall mit Stokesscher		
				und Newtonscher Reibung	176	
6.	Der	harmoni	sche Oszi	llator	179	
	6.1	Modell	und phys	ikalische Bedeutung	179	
	6.2	Die Bewegung des harmonischen Oszillators				
		6.2.1	Elementa	re Lösung der Bewegungsgleichung	182	
		6.2.2	Einige Re	esultate aus der Theorie		
			der Diffe	erentialgleichungen	185	
			6.2.2.1	Allgemeine Resultate	186	
			6.2.2.1	Lineare Differentialgleichungen	189	
			6.2.2.3	Verifizierung am Beispiel des		
				harmonischen Oszillators	192	
		6.2.3	Mathemat	ischer Exkurs: Komplexe Zahlen	192	
			6.2.3.1	Imaginäre und komplexe Zahlen	193	
			6.2.3.2	Komplexe Funktionen	198	
			6.2.3.3	Anwendung auf den harmonischen Oszillator .	204	
			6.2.3.4	Der komplexe und der unitäre Vektorraum $ \ldots $	206	
	6.3	Der ge	dämpfte 0	szillator	209	
		6.3.1	Die Inte	gration der Bewegungsgleichung	210	
		6.3.2	Diskussi	on der Lösungen	212	
	6.4	Der harmonische Oszillator unter Einwirkung				
		einer äußeren Kraft				
		6.4.1		sgleichung und Greensche Funktion	216	
		6.4.2	Der Fall	der periodischen Erregung	221	
			6.4.2.1	Lösung unter Verwendung		
				der Greenschen Funktion	221	
				Lösung mittels der direkten Methode	223	
		6.4.3	Elementa	re Einschwingvorgänge	230	
		644	Dia Sucz	entihilität des Oszillators	235	

6.5	Der dr	eidimensionale harmonische Oszillator	239
		Gleiche Frequenzen	
		6.5.1.1 Der dämpfungsfreie Fall	239
		6.5.1.2 Der gedämpfte Fall	
	6.5.2	Unterschiedliche Frequenzen	
0bungs a u	fgaben		247

Register 269

ix