Inhaltsverzeichnis

Abk	ürzungen,		13
1	Einführur	ng ,	17
1.1	Bedeutun	g der optischen Informationsübertragung	17
1.2	Dämpfun		18
	1.2.1	Dämpfung	18
	1.2.2.	Dispersion (Laufzeitstreuung) und Bitrate	20
1.3	Typen, Pa	arameter und Standards der Lichtwellenleitertechniken	21
	1.3.1		21
	1.3.2	Multimodetechnik mit Gradientenfasern	23
	1.3.3	Monomodetechnik	25
1.4	Herstellu	ng der Lichtwellenleiter für die Nachrichtentechnik	26
1.5	Entwicklu	ingstendenzen	28
1.6		ng von Lichtwellenleitern	28
	1.6.1	Strahlenoptische und WKB-Berechnung	29
	1.6.2	Wellenoptische Berechnung	3 0
2	Wellen, S	trahlen, Moden	31
2.1			31
	2.1.1	Allgemeine Lösung	31
	2.1.2		33
	2.1.3		34
			35
		Reflexionsfaktor und Snelliussches Gesetz	35
	2.1.4.2	Leitungsersatzschaltung, Kaustik	37
	2.1.5	Skalare Betrachtung	39
2.2		und Strahlengleichung	40
2.3		d Wellenführung im dielektrischen Wellenleiter, Modenspektrum	42
	2.3.1		42
	2.3.2	Wellenoptische Lösung	44
	2.3.2.1	Feldanpassung	44
	2.3.2.2	Transversale Ersatzschaltung	45
	2.3.2.3	Diskussion des Planarwellenleiters	46
	2.3.3	Näherungslösungen und ihre Fehler	48
	2.3.3.1		48
	2.3.3.2	Fehler der strahlenoptischen Berechnung (WKB-Berechnung)	49
2.4			51
	2.4.1	Frequenz- und Zeitbereich	51
	2.4.2	Gruppenlaufzeit, Gruppengeschwindigkeit	51
	2.4.3	Material dispersion	53
	2.4.4	Zeitliche Momente	55
	2.4.5		56
	2.4.6	Reihendarstellung des Übertragungsmaßes nach Momenten	57

8	Inhaltsverzeichnis		
2.5	Beugung	, Auflösung, Gaußstrahl, Phasenraum 58	
	2.5.1	Kirchhoffsches Beugungsintegral	
	2.5.2	Fresnel- und Frauenhofer-Beugung	
	2.5.3	Auflösungsvermögen	
	2.5.4	Gaußstrahl	
	2.5.4	Phasenraum, Liouvillesches Theorem	
26			
2.6	Konarenz	z und Interferenzfähigkeit, Modenrauschen	
3	Stroblone	optische Betrachtung (WKB-Betrachtung) von Multimodefasern 67	
3.1		ptische Betrachtung (WKB-Betrachtung) von Multimodefasern 67 e Parameter	
3.2	Geführte		
	3.2.1	Charakteristische Gleichung	
	3.2.2	WKB-Methode und Variablentransformation	
	3.2.3	Feldverteilungen	
3.3		len	
3.4	Strahlung	gsmoden, Mantellicht	
3.5		hlen	
3.6	Phasenra	um von LWL	
	3.6.1	Phasenraumgrenze für die geführten Moden	
	3.6.2	Aufteilung von Phasenraum und Leistung auf die Moden 78	
	3.6.3	Phasenraumgrenze für die Leckmoden	
3.7	Anregun	g	
	3.7.1	Koppelwirkungsgrad 80	
	3.7.2	70-%-Anregung	
3.8		Fernfeld 82	
3.9		treuung, Profiloptimierung, Gewichtsfunktion	
3.7	3.9.1	Modenlaufzeiten	
	3.9.2	Dispersionsgleichgewichtsbedingung	
	3.9.2		
		r	
0.40	3.9.4		
3.10		it Störungen, Modenkopplung	
	3.10.1	Überblick über die Berechnungsmethoden	
	3.10.1.1	Ersatzlichtwellenleiter bei Krümmung	
	3.10.1.2	Gleichungen für die gekoppelten Wellen	
	3.10.1.3	Statistische Gleichungen für die gekoppelte Leistung 91	
	3.10.2	Modell für einen LWL-Abschnitt 92	
	3.10.3	Erweiterung auf LWL-Ketten	
		ĺ	
4		ptische Betrachtung, Monomodefasern	
4.1	Skalare I	Lösung für die Stufenfaser	
	4.1.1	Feldansätze 96	
	4.1.2	Eigenwertgleichung und Modendiagramm	
	4.1.3	Phasenkoeffizienten und Gruppenlaufzeiten 102	
	4.1.4	Strahlungs- und Leckmoden	
4.2		Lösung für den parabolischen LWL 103	
4.3		lle Lösung für die Stufenfaser	
1.5	4.3.1	Exakte Lösung	
	4.3.1.1	Feldansätze	
	4.3.1.1	Eigenwertgleichungen	
	4.3.1.2	Näherungen für schwach führende LWL, Relationen zu den LP-Moden 108	
	4.5.4	ranierungen für Schwach fühlende LwL, Kelauonen zu den Er-Woden 100	

		Inhaltsverzeichnis	9
	4.3.2.1	Eigenwerte	108
	4.3.2.2	Felder	108
	4.3.2.3	Annäherung der Hybridmoden durch LP-Moden	109
4.4		che Berechnung von LWL	111
4.5		nregung	114
4.6		ode-LWL mit Stufenprofil	116
	4.6.1	Feldverteilung, Monomodebereich	116
	4.6.2	Dispersion	118
4.7	Monomo	ode-LWL mit anderen Profilen	120
	4.7.1	Gaußapproximation des Feldes, Ersatz-SLWL	120
	4.7.2	Dispersion und Breitbanddispersionsoptimierung	122
	4.7.3	Mikrokrümmungsverluste	124
4.8	Polarisat	ionsdispersion, polarisationserhaltende MLWL	125
	4.8.1	Wirkungen von Anisotropie	125
	4.8.2	Ursachen der Anisotropie, Polarisationsdispersion	126
	4.8.3	Polarisationserhaltende Lichtwellenleiter	127
4.9	Optimal	e Sendeimpulsbreite bei sehr kurzen Impulsen	128
	•		
5	Strahlun	gsquellen	131
5.1		ittierende Dioden	
	5.1.1	Energieschema eines nicht- bzw. eines dotierten Halbleiters	132
	5.1.2	pn-Übergang einer Lumineszenzdiode	132
	5.1.3	Spezielle Lumineszenzdioden für LWL-Systeme	135
	5.1.4	Wirkungsgrad der Lumineszenzdiode	136
	5.1.5	Abstrahlcharakteristik	137
5.2	Laser		138
	5.2.1	Wirkungsweise des Lasers	139
	5.2.1.1	Spontane Emission	139
	5.2.1.2	Induzierte Emission	140
,	5.2.1.3	Absorption	140
	5.2.1.4	Besetzungsinversion	141
	5.2.1.5	Optischer Resonator	141
5.3		erlaser	
	5.3.1	Prinzipielle Arbeitsweise des Halbleiterlasers	143
	5.3.2	Aufbau spezieller cw-Laser	144
	5.3.2.1	Gewinngeführte Laserdioden	146
	5.3.2.2	Indexgeführte Laserdiode	
_	5.3.2.3	Dynamische Einmodenlaser (single mode laser, DSM-Laser)	148
5.4		che und optische Eigenschaften von Laserdioden	149
	5.4.1	Licht-Strom-Kennlinie	149
	5.4.2	Schwellstrom	150
	5.4.3	Wirkungsgrad der Laserdiode	152
	5.4.4	Abstrahlcharakteristik der Laserdiode	152
	5.4.5	Spektralcharakteristik der Laserdiode	153
5.5	Gegenül	perstellung wesentlicher Kenngrößen von Lumineszenz- und Laserdioden	154
5.6		ion der Lumineszenzdiode und der Laserdiode	154
	5.6.1	Modulation der Lumineszenzdiode	156
	5.6.1.1	Direkte Intensitätsmodulation	156
	5.6.1.2	Indirekte Intensitätsmodulation	159
	5.6.2	Modulation der Laserdiode	159

10	Inhaltsverzeichnis		
5.7	Modulati	onsschaltungen	162
٥.,	5.7.1	Modulationsschaltungen mit Lumineszenzdiode und Laserdiode	162
	3.7.1	ivioduluioiissonaitaiigon iniv zammeezanzaroae ana zasoraroae	
6	Fotoemn	fänger – optoelektrische Wandler	164
6.1	Wirkprin		164
0.1	6.1.1	Wirkungsweise der Fotodiode	164
	6.1.2	Kennlinie einer Fotodiode	165
	6.1.3	Wandlungsprozeß im optischen Empfänger	166
6.2		Ben des optoelektrischen Wandlers	171
0.2	6.2.1	Quantenwirkungsgrad	171
	6.2.2	Spektrale Empfindlichkeit	171
	6.2.3	Rauschbegrenzte Empfindlichkeit	173
			173
	6.2.3.1	Ersatzschaltung mit Rauschquellen	175
	6.2.3.2	(Rausch-)Qualitätskriterien für optische Empfänger	
6.3	_	aften spezieller Dioden für die LWL-Technik	177
	6.3.1	pin-Fotodiode	177
	6.3.2	Avalanche-Fotodiode	178
6.4		erschaltungen	184
	6.4.1	Struktur der Empfängerschaltungen	184
	6.4.2	Vorverstärker	186
	6.4.2.1	Vorverstärker mit Fototransistor	186
	6.4.2.2	Vorverstärker mit Fotodioden	187
	6.4.3	Optische Empfänger mit Fotodioden	189
7	Verbindı	ungs- und Kopplungstechnik	19 0
7.1	Grundleg	gende Gesetze der optischen Strahlung	190
	7.1.1	Einordnung der optischen Informationsübertragung in das Gebiet der	
		optischen Strahlung	190
	7.1.2	Lambertstrahler	190
	7.1.3	Fotometrisches Grundgesetz	192
	7.1.4	Lambertsches Kosinusgesetz	193
7.2		ung eines Lichtwellenleiters an eine Strahlungsquelle	195
7.3		ungstechnik	200
,,,	7.3.1	Steckverbinder	
	7.3.1.1	Kopplungsprinzipien	
		Stirnflächenkopplung	
		Kopplung mittels Tapers	
		Linsenkopplung	202
	7.3.1.1.3	Koppelverluste	203
		Koppelverluste durch unterschiedliche Parameter der Lichtwellenleiter	
		Koppelverluste auf Grund fertigungsbedingter Toleranzen	206
	1.3.1.2.2	- Verluste bei Abstand der Stirnflächen	207
			208
			209
		- Verluste bei verkippten Stirnflächen	209
		- Verluste bei Schräganschliff der Stirnflächen	
	5 040	- Verluste auf Grund einer rauhen Oberfläche	
	7.3.1.3	Aufbau von Steckverbindern	
	7.3.2	Spleißverbindungen	
	7.3.2.1	Schweißverbindungen	
	7.3.2.2	Klebeverbindungen	214

		Inhaltsverzeichnis	11
8	Kompone	enten zur Lichtverzweigung	215
8.1		S Viertor	215
8.2 -		Verzweigungen	217
8.3		Schalter	221
9	Integrier	e Optik	222
9.1		C	222
9.2	Elektroop	otische Bauelemente auf LiNbO ₃ -Basis	223
	9.2.1	Mach-Zehnder-Interferometer	223
	9.2.2	Richtkopplerumschalter	224
	9.2.3	X-Schalter	226
9.3	Berechnu	ingsverfahren für planare und Kanalwellenleiter	227
	9.3.1	Planare Wellenleiter	227
	9.3.1.1	Transversale Resonanzmethode	228
	9.3.1.2	WKB-Lösung	229
	9.3.2	Kanalwellenleiter	230
	9.3.2.1	Marcatilimodell	230
	9.3.2.2	Methode der Effektivbrechzahl	230
9.4	Berechnu	ngsverfahren für Bauelemente	232
	9.4.1	Berechnung von Richtkopplern	232
	9.4.2	Strahlausbreitungsmethode	233
10	Lichtwell	enleiterübertragungssysteme	235
10.1		ende Eigenschaften	235
		Systeme	239
	10.2.1	Grundlegendes über analoge Systeme	239
	10.2.2	Spezielle analoge Systeme	241
10.3	Digitale S	Systeme	244
	10.3.1	Grundlegendes über digitale Systeme	244
	10.3.1.1	Zusammenhang zwischen Signal-Rausch-Verhältnis und der Bitfehler-	
		rate	248
	10.3.1.2	Optische Mindestempfangsleistung bei digitaler Übertragung (Grenz-	
		empfindlichkeit)	251
	10.3.1.3	Pulskodemodulation	253
	10.3.1.4	Augendiagramm	255
	10.3.1.5	Kodierung	
	10.3.2	Spezielle digitale Systeme	
	10.3.2.1	PCM 30 (2,048 Mbit/s)	261
	10.3.2.2	PCM 120 (8,448 Mbit/s)	262
	10.3.2.3	PCM 480 (34,368 Mbit/s)	265
	10.3.2.4	PCM 1920 (140 Mbit/s)	266
	10.3.2.5	PCM 7680 (565 Mbit/s)	268
	10.3.2.6	PCM-Systeme höherer Hierarchiestufen	270
	10.3.2.7	Lichtwellenleitersysteme für den Teilnehmeranschlußbereich	270
10.4		ertragungssysteme mit erhöhter Leistungsfähigkeit	271
	10.4.1	Duplexbetrieb	271
	10.4.2	Wellenlängenmultiplextechnik	272
	10.4.2.1	Prismenmultiplexer und Prismendemultiplexer	273
	10.4.2.2	Beugungsgitter als Multiplexer bzw. Demultiplexer	274
	10.4.2.3	Multiplexer und Demultiplexer aus dielektrischen Dünnschichtfiltern .	275
		-	

12 Inhaltsverzeichnis		altsverzeichnis	
	10.4.3	Optischer Überlagerungsempfang	277
	10.4.4	Optische Bussysteme	283
11	Meßverfa	ahren der optischen Informationsübertragung und der Lichtwellenleiter-	
			285
11.1	Erzielen	einer angenäherten Modengleichgewichtsverteilung	285
	11.1.1	70-%-Anregung	285
	11.1.2	Modenmischung mit Vorlauflichtwellenleiter	287
	11.1.3	Modenmischung mit Vorlauflichtwellenleiter, konzentrierte Form	287
	11.1.4	Modenmischung mit Modenfilter	287
11.2	Messen d	ler numerischen Apertur	288
		ler optischen Leistung bzw. des optischen Pegels	289
		ler Dämpfung	290
	11.4.1	Meßbedingungen	290
	11.4.2	Meßmethoden	291
	11.4.2.1	Abschneideverfahren (cut-back-method)	291
	11.4.2.2		292
	11.4.2.3	Dämpfungsmessung an Monomode-Lichtwellenleitern	292
	11.4.3	Dämpfungsmessung an Steckverbindungen	293
	11.4.3.1	Meßverfahren mit identischem Lichtwellenleiter	293
	11.4.3.2	Meßverfahren mit kurzer konfektionierter Leitung	294
11.5	Reflekto	meterverfahren	294
	11.5.1	Reflektometer zur Fehlerortung	294
	11.5.2	Reflektometer als Dämpfungsmeßgerät	297
	11.5.3	Reflektometer als Rückstreumeßgerät; Rückstreuverfahren	297
11.6	Messung	der Basisbandbreite bzw. Dispersion	300
	11.6.1	Vorbemerkungen	300
	11.6.2	Bandbreitenmessung von Multimodefasern	302
	11.6.2.1	CCITT-Empfehlung G.651	302
	11.6.2.2	Ausführungsbeispiel eines Impulsmeßplatzes	302
	11.6.3	Dispersionsmessung von Monomodefasern	304
11.7	Messung	des Brechzahlprofils	306
	11.7.1	Überblick	306
	11.7.2	Nahfeldtechnik	307
	11.7.3	Eliminierung des Leckmodeneinflusses bei der Nahfeldmessung	308
	11.7.4	RNF-Verfahren	311
11.8		ung des Felddurchmessers von Monomodefasern	314
	11.8.1	Transversalversatzverfahren	314
	11.8.2	Ermittlung aus dem Nah- oder Fernfeld	315
11.9	Bestimm	ung der Grenzwellenlänge	316
	11.9.1	Technik der übertragenen Leistung	317
	11.9.2	Technik des Modenfeldradius	318
Lite	raturverze	ichnis	319
Sach	wörterver	zeichniś	326