Contents

Pre	eface		• • • • • • • • • • • • • • • • • • • •	V
Ap	plicat	ion exa	mples	(VII
No	tation			XXI
1	Intr	oductio	on to networked control systems	1
	1.1	Netwo	orked systems	ł
		1.1.1	A control-theoretical view on cyber-physical systems	1
		1.1.2	New fields of application	4
		1.1.3	Characteristic properties of networked systems	7
	1.2	Netwo	wked control systems	8
		1.2.1	Motivation for the control over digital networks	8
		1.2.2	Properties of the communication network	10
		1.2.3	Flexibility of the information structure	13
		1.2.4	Challenges of networked systems design	13
	1.3	Survey	y over the control methods tackled in this book	17
		1.3.1	Scope and key problems	17
		1.3.2	Results of algebraic graph theory and network science	2()
		1.3.3	Consensus in networked systems	21
		1.3.4	Synchronisation of multi-agent systems	22
		1.3.5	Design of the communication structure of networked controllers	24
		1.3.6	Self-organisation in networked control systems	25
		1.3.7	Event-triggered control	25
		1.3.8	Advanced control applications	26
		Notes	and references	27
2	Alge	braic g	rank theory	20
-	2.1	Basic	notions	29
	2	2.1.1	Directed graphs	20
		2.1.2	Other graphs	32
	2.2	Matrix	representations of graphs	31
		2.2.1	Adjacency matrix	31
		2.2.2	Incidence matrix	38
		2.2.3	Laplacian matrix	30
		2.2.4	Graph matrices in systems and control.	11

	2.3	Analysis of graphs	47
		2.3.1 Algebraic connectivity	47
		2.3.2 Reachability analysis	50
		2.3.3 Structure matrices	52
		2.3.4 Graphs associated with matrices	53
	2.4	Summary	55
		Notes and references	55
2	Con	concus in multi-agant systems	57
3	2 1	Consensus problem	57
	2.1	Continuous time concensus	61
	5.4	2.2.1 Pasia convergence results	61
			65
		3.2.2 Consensus value	6.0
	2.2	3.2.3 Convergence properties	08
	3.3	Specific multi-agent systems	/3
		3.3.1 Weight-balanced systems	13
		3.3.2 Completely coupled systems	76
		3.3.3 Leader-follower networks	78
		3.3.4 Control-theoretical interpretation of the consensus problem	81
		3.3.5 Formation control	84
		3.3.6 Other versions of the consensus problem	87
	3.4	Discrete-time consensus	89
		3.4.1 Consensus conditions	89
		3.4.2 Network of discrete-time integrators	91
		3.4.3 Discrete-time version of continuous-time consensus systems	93
	3.5	Consensus over switching networks	99
		3.5.1 Model	99
		3.5.2 Consensus over strongly connected networks	100
		3.5.3 Consensus in systems with changing number of agents	102
		3.5.4 Consensus over switching networks that are not connected	104
		3.5.5 Gossiping algorithms	109
	3.6	Summary	111
		Notes and references	114
	G		
4	Syn	chronisation of multi-agent systems	11/
	+.1	Synchronisation problem	11/
	4.2		120
		4.2.1 Agent model	120
		4.2.2 Networked controller	121
		4.2.3 Model of the networked system	122
	4.3	Asymptotic synchronisation of identical agents	124
		4.3.1 Output and state synchronisation	124
		4.3.2 Synchronisation condition	124
		4.3.3 Discussion of the synchronisation condition	131
		4.3.4 Synchronous trajectory	133

5

	4.3.5	Control-theoretical interpretation of the diffusive couplings	136
	4.3.6	Synchronisation in complete networks	144
4.4	Synch	ronisable agents	151
	4.4.1	The notion of synchronisability	151
	4.4.2	Necessary condition for synchronisability	152
	4.4.3	Synchronising networks	153
	4.4.4	Synchronisation vs. consensus	155
4.5	Exam	ple: Synchronising oscillator circuits	157
	4.5.1	Oscillator model	157
	4.5.2	Analysis of the circuit	159
	4.5.3	Diffusive couplings through resistor networks and synchronisation	
		condition	160
	4.5.4	Behaviour of oscillator networks	161
4.6	Synch	ronisation of agents with individual dynamics	164
	4.6.1	Model of the agents and of the networked system	164
	4.6.2	Systems with common dynamics	166
	4.6.3	Synchronisability of non-identical agents	172
	4.6.4	Synchronisation condition	175
	4.6.5	Control-theoretical interpretation of the networked controller	179
	4.6.6	Leader-follower networks	180
4.7	Synch	ronisation of multi-agent systems by means of dynamical networked	
	contro	ollers	182
	4.7.1	Agents with local controllers	182
	4.7.2	Local controllers that improve the transient behaviour	186
	4.7.3	Local controllers that introduce the virtual reference system into the	
		agent model	187
4.8	Synch	ronisation of Kuramoto oscillators	193
	4.8.1	Oscillator models	193
	4.8.2	Synchronisation of uniform Kuramoto oscillators	196
	4.8.3	Phase-locking of non-uniform Kuramoto oscillators	198
	4.8.4	Complete synchronisation of non-uniform oscillators	200
	4.8.5	Behaviour of Kuramoto oscillators with nonlinear couplings	206
	4.8.6	Complete synchronisation of non-uniform oscillators by nonlinear	
		couplings	215
4.9	Summ	nary and outlook	223
	Notes	and references	227
	Apper	ndix 4.A: Proof of Lemma 4.4	232
	Apper	ndix 4.B: Proof of Lemma 4.5	233
D	6.4	in the structure of notworked controllors	227
Desi	ign of t	he communication structure of networked controllers	2.57
5.1	Contro	of arms and design steps	201
	5.1.1	Encenve set-point forowing in hum-agent systems	2.10
	5.1.2	Main Idea: Model abstraction	240
	5.1.5	Communication structure	241
	0.1.4		242

	5.2	Model	ls	246
		5.2.1	Agent model and reference system	246
		5.2.2	Local controllers	247
		5.2.3	Extended and controlled agents	247
		5.2.4	Overall system	249
		5.2.5	Main assumption and set-point following in cycle-free networks	250
	5.3	Delay	measures	252
		5.3.1	Motivation and definitions	252
		5.3.2	Determination of the delay	256
		5.3.3	Cumulative delay of networked systems	258
		5.3.4	Communication structure design	263
	5.4	Exam	ple: Distance control of vehicle platoons	266
		5.4.1	Control aims	266
		5.4.2	String stability of vehicle platoons	270
		5.4.3	Ideal vehicle dynamics for time-headway spacing	274
		5.4.4	Vehicle platoons with adaptive cruise controller	276
		5.4.5	Vehicle platoons with cooperative adaptive cruise controller	279
		5.4.6	Vehicle dynamics for continuous progression and collision avoidance .	285
		5.4.7	Summary of the design objectives	293
		5.4.8	Specific vehicle controllers	294
	5.5	Summ	nary	303
		Notes	and references	305
6	Ran	dom gi	raphs	307
	6.1	Sparse	graphs with random edges	307
	6.2	Some	further notions of graph theory	309
		6.2.1	Characteristic path length	309
		6.2.2	Clustering coefficient	311
		6.2.3	Degree distribution	312
		6.2.4	Regular graphs	315
	6.3	Erdös	-Rényi graphs	317
		6.3.1	Edge-generation rule for random graphs	317
		6.3.2	Combinatorial properties of random graphs	319
		6.3.3	Phase transitions in random graphs	320
		6.3.4	Degree distribution and clustering coefficient	324
		6.3.5	Diameter and characteristic path length	326
	6.4	Resul	ts from Network Science	330
		6.4.1	Small-world architecture of complex networks	330
		6.4.2	Survey over the models of complex networks	331
		6.4.3	Small-world networks	334
		6.4.4	Scale-free networks	336
	6.5	Sumn	nary	341

7	Con	sensus and synchronisation with random communication	345
	7.1	Stochastic convergence	345
		7.1.1 Deterministic and random sequences	345
		7.1.2 Convergence properties of random sequences	348
	7.2	Stochastic stability of dynamical systems	362
		7.2.1 Stochastic systems	362
		7.2.2 Martingales and supermartingales	364
		7.2.3 Stability analysis	368
		7.2.4 Stability of fast switching systems	375
	7.3	Random agreement	378
		7.3.1 General consensus condition	378
		7.3.2 Network of discrete-time integrators	383
		7.3.3 Continuous consensus systems with random communication graph	384
		7.3.4 Random gossiping	388
	7.4	Random synchronisation	391
		7.4.1 Problem statement	391
		7.4.2 Synchronisation of fast switching systems	392
		7.4.3 Synchronisation over a random graph	395
	7.5	Summary	396
		Notes and references	397
		Appendix 7.A: Proof of Lemma 7.6	398
8	Self	-organisation in networked systems	401
	8.1	The idea of self-organisation	401
	8.2	Self-connecting systems	404
		8.2.1 Communication graphs with random links	404
		8.2.2 Control aim and main assumptions	408
		8.2.3 Properties of the effective communication graph	410
		8.2.4 Communication with a restricted set of neighbours	42()
	8.3	Small-world architecture of networked systems	427
		8.3.1 Extending ring structures by shortcuts	427
		8.3.2 Algorithm to generate the effective communication graph	429
		8.3.3 Properties of the effective communication graph	432
		8.3.4 Self-organised agents with changing leader	435
	8.4	Self-organised disturbance attenuation in multi-agent systems	438
		8.4.1 Main idea: Cutting the communication links from disturbed towards	
		undisturbed agents	438
		8.4.2 Communication structure	440
		8.4.3 Controlled agents	441
		8.4.4 Disturbance behaviour of the self-organised system	445
	8.5	Summary	451
		Notes and references	453
		Appendix 8.A: Proof of Lemma 4.5	454
		Appendix 8.B: Proof of Lemma 8.6	455
		Appendix 8.C: Proof of Theorem 8.2	458

9	Ever	nt-trigg	ered control	461
	9.1	Motiva	ation and control configuration	461
		9.1.1	Structure of event-triggered control loops	461
		9.1.2	Event-triggered control vs. sampled-data control	463
		9.1.3	Main idea of event-triggered control	465
		9.1.4	Continuous state-feedback control	467
	9.2	Event-	triggered stabilisation	469
		9.2.1	Stabilising state feedback	469
		9.2.2	Event-triggered implementation of the controller	470
		9.2.3	Properties of event-triggered control loops	475
		9.2.4	Self-triggered implementation of the controller	477
		9.2.5	Evaluation of the method	479
	9.3	Distur	bance attenuation by event-triggered state feedback	480
		9.3.1	Models	480
		9.3.2	Behaviour of the control loop between two consecutive events	481
		9.3.3	Event generator and disturbance estimator	484
		9.3.4	Comparison of the event-triggered control loop and the continuous	
			state-feedback loop	488
		9.3.5	Communication frequency and minimum inter-event time	490
		9.3.6	Experimental results	492
	9.4	Event-	triggered control of interconnected systems	499
		9.4.1	New structure and new phenomena	499
		9.4.2	Model of the interconnected system	501
		9.4.3	Decentralised event-triggered controllers	502
	0.5	9.4.4	Analysis of the event-triggered overall system	503
	9.5	Event-	Singered synchronisation of multi-agent systems	508
		9.5.1	Structure of the overall system	508
		9.5.2	Analysis of the overall system	510
	06	9.5.5 Summ	Anarysis of the overall system	512
	9.0	Notes	and references	521
		inces.		523
Ref	erenc	es		523
Ара	oendi	x 1: Sol	utions of the exercises	539
Арр	pendi	x 2: Ma	trices	663
	A2.1	Series		663
	A2.2	2 Inverse	e and pseudoinverse matrix	664
	A2.3	3 Eigenv	values	664
	A2	+ Specif	ic matrices	666
	A2.:	o Stabili CV	ty analysis of complex-valued matrices	669
	A2.(o Krone	cker product	671

Appendix 3: Dynamical systems	673
A3.1 Stability	673
A3.2 Further system properties	674
A3.3 Comparison principle	675
Appendix 4: Probability theory	677
A4.1 Probability space	677
A4.2 Expectation and variance	680
A4.3 Random sequences	683
A4.4 Random matrices	685
Appendix 5: MATLAB functions for graphs	687
A5.1 Matrix functions	687
A5.2 Graph objects	689
A5.3 Graph algorithms	693
Appendix 6: English–German dictionary	701
Index	705