Contents

1.	Introduction	1
	1.1 Programming of the Numerical Portions of the Programs	3
	1.2 Programming of the Input and Output	6
2.	Numerical Differentiation and Introduction into Screen	
	Dialogue	12
	2.1 Formulation of the Problem	12
	2.2 Mathematical Methods	13
	2.3 Programming	14
	2.4 Exercises	19
	2.5 Solutions to the Exercises	19
3.	Numerical Integration	22
	3.1 Formulation of the Problem	22
	3.2 Numerical Methods	23
	3.2.1 The Trapezoidal Rule	23
	3.2.2 The Simpson Rule	24
	3.2.3 Newton-Cotes Integration	25
	3.2.4 The Gauss-Legendre Integration	25
	3.3 Programming	29
	3.4 Exercises	33
	3.5 Solutions to the Exercises	33
4.	Harmonic Oscillations with Sliding and Static Friction,	
	Graphical Output of Curves	35
	4.1 Formulation of the Problem	35
	4.2 Numerical Treatment	36
	4.2.1 Transformation of the Differential Equation	36
	4.2.2 The Euler Method	37
	4.3 Programming	37
	4.4 Exercises	41
	4.5 Solutions to the Exercises	41
5.	Anharmonic Free and Forced Oscillations	43
	5.1 Formulation of the Problem	43
	5.2 Numerical Treatment	44

XI

•

.

	5.2.1 Improvement of the Euler Method	44
	5.2.2 The Runge-Kutta Method	46
	5.3 Programming	47
	5.4 Exercises	49
	5.5 Solutions to the Exercises	50
6.	Coupled Harmonic Oscillations	53
	6.1 Formulation of the Problem	53
	6.2 Numerical Method	54
	6.3 Programming	55
	6.4 Exercises	57
	6.5 Solutions to the Exercises	57
7.	The Flight Path of a Space Craft as a Solution of the	
	Hamilton Equations	59
	7.1 Formulation of the Problem	59
	7.2 Mathematical Methods	63
	7.2.1 Mesh Width Adaptation in the Runge-Kutta Method	63
	7.2.2 Coordinate Transformation	66
	7.3 Programming	67
	7.3.1 Hamilton's Equations of Motion	67
	7.3.2 Automatic Mesh Width Adjustment in the	
	Runge-Kutta Method	69
	7.3.3 Coordinate Transformation	71
	7.3.4 Main Program	73
	7.4 Exercises	79
	7.5 Solutions to the Exercises	79
8.	The Celestial Mechanics Three-body Problem	81
	8.1 Formulation of the Problem	81
	8.2 Mathematical Method	85
	8.3 Programming	85
	8.4 Exercises	89
	8.5 Solutions to the Exercises	89
9.	Computation of Electric Fields by the Method of	
	Successive Over-relaxation	90
	9.1 Formulation of the Problem	90
	9.2 Numerical Method	92
	9.2.1 Discretisation of Laplace's Equation	92
	9.2.2 The Method of Successive Over-relaxation	93
	9.3 Programming	95
	9.4 Exercises	100
	9.5 Solutions to the Exercises	100

•

10.	The Van der Waals Equation	102
	10.1 Formulation of the Problem	102
	10.2 Numerical Method	104
	10.3 Programming	106
	10.4 Exercises	112
	10.5 Solutions to the Exercises	113
11.	Solution of the Fourier Heat Conduction Equation	
	and the "Geo-Power Station"	115
	11.1 Formulation of the Problem	115
	11.2 Method of Solution	117
	11.3 Programming	119
	11.4 Exercises	121
	11.5 Solutions to the Exercises	122
12.	Group and Phase Velocity in the Example of Water Wayes	125
	12.1 Formulation of the Problem	125
	12.2 Numerical Method	129
	12.3 Programming	131
	12.4 Exercises	134
	12.5 Solutions to the Exercises	134
13.	Solution of the Radial Schrödinger Equation by	
10.	the Fox-Goodwin Method	136
	13.1 Formulation of the Problem	136
	13.2 Numerical Method of Solution	140
	13.3 Programming	142
	13.4 Exercises	144
	13.5 Solutions to the Exercises	145
14.	The Quantum Mechanical Harmonic Oscillator	149
	14.1 Formulation of the Problem	149
	14.2 Numerical Method	150
	14.3 Programming	153
	14.4 Exercises	156
	14.5 Solutions to the Exercises	156
15	Solution of the Schrödinger Equation in Harmonic	
10.	Oscillator Representation	158
	15.1 Formulation of the Problem	158
	15.2 Numerical Method	159
	15.3 Programming	160
	10.0 1 1061 annung	
	15 4 Evercises	163
	15.4 Exercises	163 163

16.	The Ground State of the Helium Atom by the	
	Hylleraas Method	165
	16.1 Formulation of the Problem	165
	16.2 Setting up the State Basis and the Matrix Equation	167
	16.3 Programming	172
	16.4 Exercises	180
	16.5 Solutions to the Exercises	180
17.	The Spherical Harmonics	181
	17.1 Formulation of the Problem	181
	17.2 Numerical Method	184
	17.3 Programming	185
	17.4 Exercises	187
	17.5 Solutions to the Exercises	188
18.	The Spherical Bessel Functions	189
	18.1 Formulation of the Problem	189
	18.2 Mathematical Method	191
	18.3 Programming	192
	18.4 Exercises	195
	18.5 Solutions to the Exercises	195
19.	Scattering of an Uncharged Particle from a Spherically	
	Symmetric Potential	197
	19.1 Formulation of the Problem	197
	19.2 Mathematical Treatment of the Scattering Problem	200
	19.3 Programming	203
	19.4 Exercises	206
	19.5 Solutions to the Exercises	207
Ref	erences	209
Sub	ject Index	211

.