Contents

••••	1 1
	1
• • • •	2
	5
• • • •	9
• • • •	11
• • • •	12
	13
• • • •	13
• • • •	13
• • • •	15
• • • •	17
••••	17
	20
	23
• • • •	23
• • • •	23
	· · · · · · · · · · · · · · · · · · ·

	3.3 The Physical Model	24
	3.4 Analytical Solution	25
	3.5 Graphical Solution	26
	3.6 Application and Comments	29
	3.7 A Mnemonic Device for π	29
	3.8 Comments on the Number π	30
4	The Sketch Problem	33
	4.1 Introduction	33
	4.2 The Problem	34
	4.3 The "Proof"	34
	4.4 The First Clue	36
	4.5 The Complete Truth	38
	4.6 The Moral	39
5	The Parallel Parking Problem	41
	5.1 Introduction	41
	5.2 The Problem	42
	5.3 Rebecca Hoyle's Formula	43
	5.4 Criticizing Hoyle's Formula	44
	5.5 The Turning Circle	45
	5.6 The Center of the Turning Circle	47
	5.7 The Smallest Possible Circle	48
	5.8 The Effective Radius	49
	5.9 Our Model Car	50
	5.10 New Formulas for Parallel Parking	51
	5.11 The Formula for a 45 degree Maneuver	53
	5.12 The Optimal Formulas	54
	5.13 Conclusions	55
	5.14 Values for a Few Cars	56
	5.15 A Little Mental Exercise	58

6	The	Parking Garage Problem	59
	6.1	Introduction	59
	6.2	The Problem	59
	6.3	Forward Parking	60
	6.4	Backward Parking	62
7	The	e 85th Birthday Problem	67
	7.1	Dear Mother-in-Law	67
	7.2	What Do Mathematicians Do?	68
	7.3	The Numbers of Your Life	69
	7.4	The Number Zero	70
	7.5	The Number 85	74
	7.6	85 Is Everywhere	77
	7.7	State Capital Problem	79
8	The	Slippery-Ice or Bread-Slicing Problem	81
	8.1	Introduction	81
	8.2	The Problem	81
	8.3	Physical Background	82
	8.4	The Mathematical Model	83
	8.5	The Solution	85
	8.6	The Result	89
	8.7	Interpretation of the Result	90
	8.8	Some Further Remarks	90
	8.9	A Little Brain Teaser	92
9	The	Snail–Racehorse Problem	93
	9.1	Introduction	93
	9.2	The Problem	93
	9.3	Mathematical Formulation	94

	9.4 Solution of the Differential Equation
	9.5 Calculating the Time of Meeting
	9.6 Evaluating the Example
	9.7 Solution of State Capital Problem
10	The Discus Thrower Problem
	10.1 Introduction
	10.2 The Problem 100
	10.3 The "Loss" Formula 100
	10.4 Application 103
11	The Beer Coaster Problem 107
	11.1 Introduction 107
	11.2 The Problem 107
	11.3 Physical Background 108
	11.4 Mathematical Description 108
	11.5 The Solution 110
	11.6 Application to the Beer Coaster Problem 115
	11.7 Concluding Remarks 118
12	The Toasting Problem 119
	12.1 Introduction
	12.2 The Problem
	12.3 Mathematical Induction 123
	12.4 Application
	12.5 Related Problems 127
13	The Heart Problem
	13.1 Introduction
	13.2 The Problem

Contents	xiii
13.3 First Solution	129
13.4 Additional Solutions	132
References	135
Index	137