CONTENTS

Acknow	ledgements	ix
Prefac	e	×i
Preser	ntation of the project team	xiii
Execut	cive Summary	×v
1.	Introduction	1
2.	Motivations for wind energy utilization	3
3.	Present energy situation in the EC	5
4.	Classification of wind energy converters	11
4.1	Horizontal axis wind turbines	11
4.2	Vertical axis wind turbines	16
4.3	Cross-wind devices	20
4.4	Reduction principles of the transmission ratio	22
5.	Historic plants	27
6.	Aerodynamics of wind turbines	34
7.	Wind characteristics	39
8.	Principal design loads for WECs	46
9.	Control of WECs	48
9.1	Stall control	48
9.2	Frequency and power regulation by blade pitch control	58
9.3	Other control principles	60
10.	Power transmission and conversion systems	64
10.1	Introduction	64
10.2	Mechanical methods	64
10.3	Hydraulic method	66

10.4	Electrical methods	66
	a) The synchronous generator	67
	b) The asynchronous (induction) generator	68
	c) Induction generator with oversynchronous inverter cascade	72
	d) Double-fed induction generator	73
	e) Frequency conversion systems	74
11.	Typical examples of wind turbines currently used	
	in the Community	77
11.1	Pitch-controlled WECs	78
11.2	Stall-controlled WECs	86
11.3	Vertical axis WECs	99
10 Th	e Danish Wind Energy Programme	102
12.1	Introduction	102
12.1		102
12.2	Basis of the programme	102
12.3	Results of the small wind turbine programme	105
	The second generation of small Danish wind turbines	109
12.5	Fault statistics for small Danish wind turbines	
12.6	Production statistics	118
12.7	Large scale wind turbines in Denmark	119
	a) Selection of the turbine types	120
	b) Description of the turbines	121
	c) Operational results	122
	d) Commercialization of large scale wind turbines in Denmark	125
13.		127
	Statistical analysis of data of reference systems	
13.1	Power curves	143
13.2	Energy output and ratings	146
13.3	Specific investment	157
13.4	Economics of wind turbines	160
13.5	Real energy production of existing wind turbines	163
13.6	Failure analysis	164

14.	Implications of the results for further R&D	169
14.1	Meteorology	169
	a) Laser doppler anemometers with reduced response times	169
	b) Sonic doppler anemometer (SODAR)	170
	c) Spatial observation of visible particles by stereo	
	video systems	171
14.2	Aerodynamics	173
14.3	Structural dynamics	175
14.4	Power transmission and control	175
14.5	Safety of WECs	176
14.6	Information on the current status of wind technology	176
15.	References	177
16.	Appendix I Data sheets	180
17.	Appendix II Address-list of -wind turbine manufacturers	283
	-component manufacturers	293
	-consulting, research and information resources	296