Inhaltsverzeichnis

Ve	rwendete	Zeichen und Abkürzungen	9
Κι	ırzfassun	g	11
Αb	stract		13
1	Einleit	tung	16
2	Stand	der Technik	19
2	.1 R	elevante umformtechnische Verfahren	20
	2.1.1	Allgemeine Definition des Umformens	20
	2.1.2	Beschreibung des Karosserieziehens	21
	2.1.3	Einordnung und Beschreibung des Streckziehens	21
	2.1.4	Einordnung und Beschreibung des Tiefziehens	23
	2.1.5	Beschreibung und Einordnung des Biegeprozesses von Blechen	25
	2.1.6	Beschreibung des Falzprozesses	30
	2.1.7	Beschreibung häufig verwendeter Falzgeometrien	39
	2.1.8	Definitionen des Spaltmaßes im Fahrzeugrohbau und des Falzverlustes	40
2	.2 G	rundlagen der Robotertechnik	42
	2.2.1	Definition und Begriffe zu Industrierobotern	42
	2.2.2	Robotersteuerung	44
	2.2.3	Roboterprogrammierungsmethoden	47
	2.2.4	Genauigkeit von Industrierobotern	49
	2.2.5	Steifigkeitsverhalten des Roboters	50
2	.3 G	rundlagen der Methoden der statistischen Versuchsplanung	53
	2.3.1	Allgemeine Beschreibung der statistischen Versuchsplanung	53
	2.3.2	Vollfaktorielle Versuchspläne	56
	2.3.3	Teilfaktorielle Versuchspläne	57
	2.3.4	Versuchspläne und Optimierung nach Taguchi	58
2	4 G	rundlagen der Umformsimulation und der FEM-Berechnung	61
	2.4.1	Beschreibung häufig verwendeter Elementtypen	63
	2.4.2	Einführung und Vergleich von expliziter und impliziter Zeitintegration	65
2	5 U	Intersuchungsergebnisse aus Rollfalzexperimenten und FEM-Simulation	67
	2.5.1	Spannungs- und Dehnungszustand während des Rollfalzens	68
	2.5.2	Methoden der Versagensvorhersage für Rollfalzprozesse	68

	2.5.3	Faltenbildung während des Rollfalzprozesses	70
	2.5.4	Einflüsse auf den Falzverlust während des Rollfalzens	71
	2.5.5	Einflüsse auf die Radiuseinsatzlinie während des Rollfalzens	73
	2.5.6	Einflüsse auf die Falzqualität	73
	2.5.7	Kraftbedarf und Robotersteifigkeit während des Rollfalzprozesses	74
3		ation und Zielsetzung der Arbeit	
	3.1 B	etrachtung der vorliegenden Erkenntnisse	76
	3.2 N	Notivation und wissenschaftliche Zielsetzung der Arbeit	77
	3.3 V	'orgehensweise	78
4	Mode	llentwicklung der FEM-Rollfalzsimulation	79
	4.1 B	eschreibung der virtuellen Prozesskette	79
	4.2 ls	ntegration von FEM-Rollfalzsimulationen in die virtuelle Prozesskette	82
	4.2.1	Anforderungen an die Netzgestaltung für Falzprozesse	83
	4.3 E	ntwicklung einer Berechnungsmethode für 3D-Werkzeugkinematiken	85
	4.3.1	Allgemeine Beschreibung der freien Rollenbewegung	86
	4.3.2	Berechnung der allgemeinen kinematischen Beschreibungsgrößen	87
	4.3.3	Umsetzungsmöglichkeiten in LS-DYNA	93
	4.3.4	Bewertung der Lösungskonzepte zur Implementierung der Falzrollenbahnen	95
	4.4 C	Optimierte Parameterwahl für Rollfalzsimulationen in LS-DYNA	97
	4.4.1	Empfehlung für die Anwendung der Massenskalierung	97
	4.4.2	Betrachtung der virtuellen Werkzeuggeschwindigkeit	99
5	Unter	suchung des Rollfalzprozesses mittels FEM-Simulation	101
	5.1 A	uswahl von Prozessgrößen mit Einfluss auf das Rollfalzergebnis	101
	5.1.1	Beschreibung der Störgrößen	101
	5.1.2	Beschreibung der Steuergrößen	105
	5.2 S	ensitivitätsstudie nach Methoden des Design of Experiments und Taguchi	107
	5.2.1	Versuchsplan und Ergebnisse der Analyse der Störgrößeneinflüsse	108
	5.2.2	Versuchsplan und Ergebnisse der Analyse der Steuergrößeneinflüsse	113
	5.2.3	Ergänzende Untersuchung des Einflusses des Vorfalzwinkels	121
	5.3	heoretische Robustheitsempfehlung nach Taguchi	123
	5.4 2	Zusammenfassung der DoE-Ergebnisse	124
6	Entwi	icklung von Meta-Modellen für Rollfalzprozesse	126
	6.1	Grundlagen zur Struktur von Meta-Modellen	126

	6.1.1	Allgemeine Charakterisierung	126
	6.1.2	Beschreibung der verwendeten empirischen Modelle	127
6.2	. v	orgehensweise bei der Entwicklung der Meta-Modelle	129
	6.2.1	Wahl zu berücksichtigender Parameter zur Entwicklung der Meta-Modelle	129
	6.2.2	Festlegung des Versuchsplanes für die empirische Datenbasis	130
	6.2.3	Bestimmung der Koeffizienten der Meta-Modelle für Rollfalzprozesse	132
6.3	N	lutzung der Meta-Modelle zur optimalen Auslegung von Rollfalzprozessen	133
7	Validi	erung der FEM-Rollfalzsimulation und der Meta-Modelle	135
7.1	Е	ntwicklung einer Strategie zur Übertragung der realen Falzrollenkinematik	135
	7.1.1	Extraktion der Rollenkinematik aus dem Roboterprogramm	136
	7.1.2	Roboterinterne Aufzeichnung der Rollenkinematik	139
	7.1.3	Messtechnische externe Erfassung der Rollenkinematik	139
	7.1.4	Diskussion der Strategien zur Bestimmung der realen Falzrollenkinematik	140
7.2	2 V	'alidierung der FEM-Simulation an einer Prinzipgeometrie	143
	7.2.1	Beschreibung der Versuchseinrichtung zur Validierung der FEM-Simulation .	144
	7.2.2	Beschreibung des untersuchten Werkstoffes	146
	7.2.3	Beschreibung der verwendeten FEM-Konfigurationen	146
	7.2.4	Betrachtung der Dehnungsverteilung im Falz	147
	7.2.5	Vergleich der benötigten Berechnungszeit der FEM-Rollfalzsimulation	148
	7.2.6	Untersuchungen der Robotersteifigkeit	149
	7.2.7	Vergleich von Simulation und Experiment hinsichtlich Falzverlust	151
7.3	3 V	/alidierung der FEM-Simulation an einem Realbauteil	152
	7.3.1	Beschreibung des Versuchsaufbaus	153
	7.3.2	Beschreibung der verwendeten FEM-Konfigurationen	157
	7.3.3	Ergebnis der Validierung hinsichtlich des Falzverlustes	158
	7.3.4	Ergebnis der Validierung bezüglich der Lage der Radiuseinsatzlinie	161
	7.3.5	Diskussion der FEM-Validierungsergebnisse	164
7.4	ı v	/alidierung der Meta-Modelle an einem Realbauteil	166
	7.4.1	Versuchskonfiguration und Vergleichsmethode	166
	7.4.2	Ergebnis der Validierung der Meta-Modelle bezüglich des Falzverlustes	166
	7.4.3	Ergebnis der Validierung der Meta-Modelle bezüglich der Radiuseinsatzlinie	168
7.5	5 \	Alidierung einer ontimierten Konfiguration nach Auslegungsstrategie	170

Validierung der Robustheitsempfehlungen für Rollfalzprozesse 17	/2			
Vorgehensweise bei der Verifikation der Robustheitsempfehlung17	72			
Verifikation der Annahmen an einer Versuchsgeometrie	73			
Verifikation der Annahmen an einem Realbauteil	75			
Zusammenfassung der Validierung der Robustheitsempfehlung	77			
Zusammenfassung und Ausblick17	78			
Anhang18	32			
Literatur18	38			
Danksagung1				
Lebenslauf				
	Vorgehensweise bei der Verifikation der Robustheitsempfehlung			