Finite	e Diffe	rence Methods for Mean Field Games	1
Yves	Achdo	u	
1	Introd	uction	1
2	Finite Difference Schemes		
	2.1	Description of the Schemes	4
	2.2	Existence and A priori Bounds	9
	2.3	A Fundamental Identity	14
	2.4	Uniqueness	16
	2.5	A priori Estimates for (21)–(22) with Local Operators ϕ	16
3	Examples of Convergence Results		19
4	Algorithms for Solving the Discrete Linear Systems		24
	4.1	Newton Methods for Solving (21)–(22)	24
	4.2	Iterative Strategies for Solving (54) Based	
		on Eliminating \mathscr{U}	26
5	Some	Simulations	31
6	The Planning Problem		35
	6.1	Description of the Planning Problem	35
	6.2	The Finite Difference Scheme and an Optimal	
		Control Formulation	36
	6.3	Uniqueness	44
	6.4	A Penalty Method	45
Refer	ences .	·····	45
An I	ntrodu	ction to the Theory of Viscosity Solutions	
for F	irst-Oı	der Hamilton–Jacobi Equations and Applications	49
Guy I	Barles		
1	Introduction		
2	Preliminaries: A Running Example		

3	The Notion of Continuous Viscosity Solutions: Definition(s)			
	and I	First Properties	53	
	3.1	Why a "Good" Notion of Weak Solution is Needed?	53	
	3.2	Continuous Viscosity Solutions	54	
	3.3	Back to the Running Example (I): The Value Function		
		U is a Viscosity Solution of (7)	56	
	3.4	An Equivalent Definition and Its Consequences	58	
4	The	First Stability Result for Viscosity Solutions	60	
5	Uniq	ueness: The Basic Arguments and Additional Recipes	64	
	5.1	A First Basic Result	64	
	5.2	Several Variations	70	
	5.3	Finite Speed of Propagation	72	
6	Disc	ontinuous Viscosity Solutions, Discontinuous		
-	Nonl	linearities and the "Half-Relaxed Limits" Method	74	
	6.1	Discontinuous Viscosity Solutions	74	
	6.2	Back to the Running Example (II): The Dirichlet		
		Boundary Condition for the Value-Function	76	
	6.3	The Half-Relaxed Limit Method	77	
	6.4	Strong Comparison Results	81	
7	Exist	tence of Viscosity Solutions: Perron's Method	82	
8	Regi	larity Results	86	
9	Conv	vex Hamiltonians, Barron–Jensen Solutions	89	
10	Larg	e Time Behavior of Solutions of Hamilton–Jacobi Equations	92	
	10.1	Introduction	92	
	10.2	Existence and Regularity of the Solution	93	
	10.3	Ergodic Behavior	94	
	10.4	Asymptotic Behavior of $u(x,t) - ct$	97	
	10.5	The Namah–Roqueioffre Framework	98	
	10.6	The "Strictly Convex" Framework	100	
	10.7	Concluding Remarks	106	
Refe	rences		107	
			-	
A SI	iort Ir	troduction to Viscosity Solutions and the Large		
Tim	e Beha	avior of Solutions of Hamilton–Jacobi Equations	111	
Hito	shi Ish			
1	Intro	duction to Viscosity Solutions	114	
	1.1	Hamilton–Jacobi Equations	114	
	1.2	An Optimal Control Problem	115	
	1.3	Characterization of the Value Function	121	
	1.4	Semicontinuous Viscosity Solutions and the Perron Method	128	
	1.5	An Example	139	
2	1.6	Sup-convolutions	141	
2	Neur	nann Boundary Value Problems	1/19	
3	Initia	al-Boundary Value Problem for Hamilton–Jacobi Equations	140 149	
	3.1	Initial-Boundary Value Problems	1.40	

	3.2 Additive Eigenvalue Problems	152	
	3.3 Proof of Comparison Theorem	155	
4	Stationary Problem: Weak KAM Aspects	165	
	4.1 Aubry Sets and Representation of Solutions	166	
	4.2 Proof of Theorem 4.2	174	
5	Optimal Control Problem Associated with (ENP)-(ID)		
	5.1 Skorokhod Problem	185	
	5.2 Value Function I	191	
	5.3 Basic Lemmas	194	
	5.4 Value Function II	202	
	5.5 Distance-Like Function <i>d</i>	208	
6	Large-Time Asymptotic Solutions	211	
	6.1 Preliminaries to Asymptotic Solutions	214	
	6.2 Proof of Convergence	219	
	6.3 Representation of the Asymptotic Solution u_{∞}	222	
	6.4 Localization of Conditions (A9)±	226	
A.1	Local maxima to global maxima	229	
A.2	A Quick Review of Convex Analysis	230	
A.3	Global Lipschitz Regularity	235	
A.4	Localized Versions of Lemma 4.2	238	
A.5	A Proof of Lemma 5.4	242	
A.6	Rademacher's Theorem	245	
Refe	rences	247	
Talam	matent/Transical Analysis the Hamilton Jacobi		
ruen	potent/ fropical Analysis, the manniton-jacobi	251	
Grig	bennan Equations	251	
Ung	Juy L. Litvinov	251	
1 2	The Mesley Dequentization	253	
2	Samirings and Samifalds: The Idempotent Correspondence	255	
3	Principle	254	
4	Idempetent Analysis	254	
4 5	The Superposition Principle and Linear Equations	255	
5	5.1 Houristice	256	
	5.2 The Cauchy Droblem for the Hamilton Jacobi Equations	250	
6	Convolution and the Fourier Legendre Transform	259	
7	Convolution and the Fourier–Legendre Transform		
'	7.1 Idempotent Semimodules and Idempotent Linear Spaces	201	
	7.1 Idempotent Semimodules and Idempotent Enlear Spaces	202	
	7.2 Dasic Results	200	
	7.5 Intempotent 0-semimodules	200	
	and Subsemimodules	267	
	7.5 Functional Semimodules	207	
	7.5 Integral Representations of Linear Operators	200	
	in Functional Semimodules	270	

\

	7.7	Nuclear Operators and Their Integral Representations	272	
	7.8	The <i>b</i> -approximation Property and <i>b</i> -nuclear		
		Semimodules and Spaces	272	
	7.9	Kernel Theorems for Functional <i>b</i> -Semimodules	273	
	7.10	Integral Representations of Operators in Abstract		
		Idempotent Semimodules	273	
8	The Dequantization Transform, Convex Geometry			
	and the Newton Polytopes			
	8.1	Dequantization Transform: Algebraic Properties	276	
	8.2	Generalized Polynomials and Simple Functions	277	
	8.3	Subdifferentials of Sublinear Functions	278	
	8.4	Newton Sets for Simple Functions	279	
9	Dequa	antization of Set Functions and Measures on Metric Spaces	280	
10	Dequa	antization of Geometry	281	
11	Some	Semiring Constructions and the Matrix Bellman Equation	282	
	11.1	Complete Idempotent Semirings and Examples	282	
	11.2	Closure Operations	282	
	11.3	Matrices Over Semirings	283	
	11.4	Discrete Stationary Bellman Equations	284	
	11.5	Weighted Directed Graphs and Matrices Over Semirings	284	
12	Unive	rsal Algorithms	287	
13	Unive	rsal Algorithms of Linear Algebra Over Semirings	288	
14	The C	Correspondence Principle for Computations	293	
15	The Correspondence Principle for Hardware Design			
16	The Correspondence Principle for Software Design 2			
17	Interval Analysis in Idempotent Mathematics			
References				