High-Frequency Financial Econometrics

Yacine Aït-Sahalia and Jean Jacod

Princeton University Press Princeton and Oxford

Contents

Preface									
N	Notation x								
Ι	Pı	relimi	nary Material	1					
1	Fro	m Dif	fusions to Semimartingales	3					
	1.1	Diffus	sions	5					
		1.1.1	The Brownian Motion	5					
		1.1.2	Stochastic Integrals	8					
		1.1.3	A Central Example: Diffusion Processes	12					
	1.2	Lévy	Processes	16					
		1.2.1	The Law of a Lévy Process	17					
		1.2.2	Examples	20					
		1.2.3	Poisson Random Measures	24					
		1.2.4	Integrals with Respect to Poisson Random Mea-						
			sures	27					
		1.2.5	Path Properties and Lévy-Itô Decomposition	30					
	1.3	Semin	nartingales	35					
		1.3.1	Definition and Stochastic Integrals	35					
		1.3.2	Quadratic Variation	38					
		1.3.3	Itô's Formula	40					
		1.3.4	Characteristics of a Semimartingale and the Lévy-						
			Itô Decomposition $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	43					
	1.4	Itô Se	mimartingales	44					
		1.4.1	The Definition	44					
		1.4.2	Extension of the Probability Space	46					
		1.4.3	The Grigelionis Form of an Itô Semimartingale .	47					

		1.4.4	A Fundamental Example: Stochastic Differential Equations Driven by a Lévy Process	49
	1.5	Proce	esses with Conditionally Independent Increments	52
		1.5.1	Processes with Independent Increments	53
		1.5.2	A Class of Processes with \mathcal{F} -Conditionally Inde-	
			pendent Increments	54
2	Dat	ta Con	siderations	57
	2.1	Mech	anisms for Price Determination	58
		2.1.1	Limit Order and Other Market Mechanisms	59
		2.1.2	Market Rules and Jumps in Prices	61
		2.1.3	Sample Data: Transactions, Quotes and NBBO $$.	62
	2.2	High-	Frequency Data Distinctive Characteristics	64
		2.2.1	Random Sampling Times	65
		2.2.2	Market Microstructure Noise and Data Errors . $\ .$	66
		2.2.3	Non-normality	67
	2.3	Mode	ls for Market Microstructure Noise	68
		2.3.1	Additive Noise	68
		2.3.2	Rounding Errors	72
	2.4	Strate	egies to Mitigate the Impact of Noise	73
		2.4.1	Downsampling	73
		2.4.2	Filtering Transactions Using Quotes	74
τī	·	aymp	tatic Concepts	70
TT	A	symp	totic Concepts	79
3	Intr	oducti	ion to Asymptotic Theory: Volatility Estima-	
	tion	1 for a	Continuous Process	83
	3.1	Estim	ating Integrated Volatility in Simple Cases	85
		3.1.1	Constant Volatility	85
		3.1.2	Deterministic Time-Varying Volatility	87
		3.1.3	Stochastic Volatility Independent of the Driving	
			Brownian Motion W	88
		3.1.4	From Independence to Dependence for the	
		~	Stochastic Volatility	90
	3.2	Stable	Convergence in Law	91
	3.3	Conve	rgence for Stochastic Processes	96
	3.4	Genera	al Stochastic Volatility	99
	3.5	What	If the Process Jumps?	106

4	Wi	th Jumps: An Introduction to Power Variations	109
	4.1	Power Variations	110
		4.1.1 The Purely Discontinuous Case	111
		4.1.2 The Continuous Case	112
		4.1.3 The Mixed Case	113
	4.2	Estimation in a Simple Parametric Example: Merton's	
		Model	116
		4.2.1 Some Intuition for the Identification or Lack	
		Thereof: The Impact of High Frequency	117
		4.2.2 Asymptotic Efficiency in the Absence of Jumps .	119
		4.2.3 Asymptotic Efficiency in the Presence of Jumps .	120
		4.2.4 GMM Estimation	122
		4.2.5 GMM Estimation of Volatility with Power Varia-	
		tions \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	124
	4.3	References	130
5	Hig	h-Frequency Observations: Identifiability and	
	Asy	mptotic Efficiency	131
	5.1	Classical Parametric Models	132
		5.1.1 Identifiability	133
		5.1.2 Efficiency for Fully Identifiable Parametric Models	134
		5.1.3 Efficiency for Partly Identifiable Parametric Mod-	
		els	137
	5.2	Identifiability for Lévy Processes and the Blumenthal-	
		Getoor Indices	139
		5.2.1 About Mutual Singularity of Laws of Lévy Pro-	
		cesses	139
		5.2.2 The Blumenthal-Getoor Indices and Related	
		Quantities for Lévy Processes	141
	5.3	Discretely Observed Semimartingales: Identifiable Pa-	
		rameters	144
		5.3.1 Identifiable Parameters: A Definition	145
		5.3.2 Identifiable Parameters: Examples `	148
	5.4	Tests: Asymptotic Properties	151
	5.5	Back to the Lévy Case: Disentangling the Diffusion Part	
		from Jumps	155

165

	5.5.1 The Parametric Case	155
	5.5.2 The Semi-Parametric Case	156
5.6	Blumenthal-Getoor Indices for Lévy Processes: Efficiency	
	via Fisher's Information	160
5.7	References	163

III Volatility

6	\mathbf{Est}	imatin	g Integrated Volatility: The Base Case with	
	No	Noise	and Equidistant Observations	169
	6.1	When	the Process Is Continuous	171
		6.1.1	Feasible Estimation and Confidence Bounds	173
		6.1.2	The Multivariate Case	176
		6.1.3	About Estimation of the Quarticity	177
	6.2	When	the Process Is Discontinuous	179
		6.2.1	Truncated Realized Volatility	180
		6.2.2	Choosing the Truncation Level: The One-	
			Dimensional Case	187
		6.2.3	Multipower Variations	191
		6.2.4	Truncated Bipower Variations	194
		6.2.5	Comparing Truncated Realized Volatility and	
			Multipower Variations	196
	6.3	Other	Methods	197
		6.3.1	Range-Based Volatility Estimators	197
		6.3.2	Range-Based Estimators in a Genuine High-	
			Frequency Setting	198
		6.3.3	Nearest Neighbor Truncation	199
		6.3.4	Fourier-Based Estimators	200
	6.4	Finite	Sample Refinements for Volatility Estimators	202
	6.5	Refere	nces	207
7	Vol	atility	and Microstructure Noise	209
	7.1	Model	s of Microstructure Noise	211
		7.1.1	Additive White Noise	211
		7.1.2	Additive Colored Noise	212
		7.1.3	Pure Rounding Noise	213
		7.1.4	A Mixed Case: Rounded White Noise	215
		7.1.5	Realized Volatility in the Presence of Noise	216

	7.2	Assur	nptions on the Noise	220
	7.3	Maxii	mum-Likelihood and Quasi Maximum-Likelihood	
		Estim	ation	224
		7.3.1	A Toy Model: Gaussian Additive White Noise and	
			Brownian Motion	224
		7.3.2	Robustness of the MLE to Stochastic Volatility .	228
	7.4	Quad	ratic Estimators	231
	7.5	Subsa	mpling and Averaging: Two-Scales Realized	
		Volati	ility	232
	7.6	The F	Pre-averaging Method	238
		7.6.1	Pre-averaging and Optimality	245
		7.6.2	Adaptive Pre-averaging	247
	7.7	Flat 7	Fop Realized Kernels	250
	7.8	Multi-	-scales Estimators	253
	7.9	Estim	ation of the Quadratic Covariation	254
	7.10	Refere	ences	256
8	Esti	matin	g Spot Volatility	259
	8.1	Local	Estimation of the Spot Volatility	261
		8.1.1	Some Heuristic Considerations	261
		8.1.2	Consistent Estimation	265
		8.1.3	Central Limit Theorem	266
	8.2	Globa	l Methods for the Spot Volatility	273
	8.3	Volati	lity of Volatility	274
	8.4	Levera	age: The Covariation between X and c	279
	8.5	Optim	al Estimation of a Function of Volatility	284
	8.6	State-	Dependent Volatility	289
	8.7	Spot V	Volatility and Microstructure Noise	293
	8.8	Refere	ences	296
9	Vola	atility	and Irregularly Spaced Observations	299
	9.1	Irregu	lar Observation Times: The One-Dimensional Case	301
		9.1.1	About Irregular Sampling Schemes	302
		9.1.2	Estimation of the Integrated Volatility and Other	
			Integrated Volatility Powers	305
		9.1.3	Irregular Observation Schemes: Time Changes .	309
	9.2	The M	Iultivariate Case: Non-synchronous Observations .	313
		9.2.1	The Epps Effect	314
		9.2.2	The Hayashi-Yoshida Method	315
		9.2.3	Other Methods and Extensions	320

xi

9.3 References	3
IV Jumps	32
10 Testing for Jumps	32
10.1 Introduction \ldots	3
10.2 Relative Sizes of the Jump and Continuous Parts and	
Testing for Jumps	3
10.2.1 The Mathematical Tools	3
10.2.2 A "Linear" Test for Jumps	3
10.2.3 A "Ratio" Test for Jumps	3
10.2.4 Relative Sizes of the Jump and Brownian Parts . (a^{W})	3°
10.2.5 Testing the Null $\Omega_T^{(c)}$ instead of $\Omega_T^{(cw)}$	3.
10.3 A Symmetrical Test for Jumps	3.
10.3.1 The Test Statistics Based on Power Variations .	3.
10.3.2 Some Central Limit Theorems	3.
10.3.3 Testing the Null Hypothesis of No Jump	3
10.3.4 Testing the Null Hypothesis of Presence of Jumps	3
10.3.5 Comparison of the Tests \ldots \ldots \ldots	3
10.4 Detection of Jumps	3
10.4.1 Mathematical Background	3
10.4.2 A Test for Jumps \ldots \ldots \ldots \ldots	3
10.4.3 Finding the Jumps: The Finite Activity Case	3
10.4.4 The General Case $\ldots \ldots \ldots \ldots \ldots \ldots$	3
10.5 Detection of Volatility Jumps	3
10.6 Microstructure Noise and Jumps	3
10.6.1 A Noise-Robust Jump Test Statistic	3
10.6.2 The Central Limit Theorems for the Noise-Robust	
$Jump Test \dots \dots$	3
10.6.3 Testing the Null Hypothesis of No Jump in the	
Presence of Noise	3
10.6.4 Testing the Null Hypothesis of Presence of Jumps	
in the Presence of Noise	3
10.7 References \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	39
11 Finer Analysis of Jumps: The Degree of Jump Activity	39
11.1 The Model Assumptions	39
11.2 Estimation of the First BG Index and of the Related	
Intensity	39

		11.2.1 Construction of the Estimators	399
		11.2.2 Asymptotic Properties	404
		11.2.3 How Far from Asymptotic Optimality?	407
		11.2.4 The Truly Non-symmetric Case	415
	11.3	Successive BG Indices	419
		11.3.1 Preliminaries	420
		11.3.2 First Estimators	422
		11.3.3 Improved Estimators	424
	11.4	References	427
12	Fini	te or Infinite Activity for Jumps?	429
	12.1	When the Null Hypothesis Is Finite Jump Activity	430
	12.2	When the Null Hypothesis Is Infinite Jump Activity	437
	12.3	References	439
13	Is B	rownian Motion Really Necessary?	441
	13.1	Tests for the Null Hypothesis That the Brownian Is	
		Present	443
	13.2	Tests for the Null Hypothesis That the Brownian Is Absent	446
		13.2.1 Adding a Fictitious Brownian	448
		13.2.2 Tests Based on Power Variations	449
	13.3	References	451
14	Co-j	umps	453
	14.1	Co-jumps for the Underlying Process	453
		14.1.1 The Setting	453
		14.1.2 Testing for Common Jumps	456
		14.1.3 Testing for Disjoint Jumps	459
		14.1.4 Some Open Problems	463
	14.2	Co-jumps between the Process and Its Volatility	464
		14.2.1 Limit Theorems for Functionals of Jumps and	
		Volatility	466
		14.2.2 Testing the Null Hypothesis of No Co-jump	469
		14.2.3 Testing the Null Hypothesis of the Presence of	
		Co-jumps	473
	14.3	References	474
A	Asy	mptotic Results for Power Variations	477
	A.1	Setting and Assumptions	477
	A.2	Laws of Large Numbers	480

		A.2.1	LLNs for Power Variations and Related Function-
			als
		A.2.2	LLNs for the Integrated Volatility
		A.2.3	LLNs for Estimating the Spot Volatility
	A.3	Centra	al Limit Theorems
		A.3.1	CLTs for the Processes $B(f, \Delta_n)$ and $\overline{B}(f, \Delta_n)$.
		A.3.2	A Degenerate Case
		A.3.3	CLTs for the Processes $B'(f, \Delta_n)$ and $\overline{B}'(f, \Delta_n)$
		A.3.4	CLTs for the Quadratic Variation
	A.4	Noise	and Pre-averaging: Limit Theorems
		A.4.1	Assumptions on Noise and Pre-averaging Schemes
		A.4.2	LLNs for Noise
		A.4.3	CLTs for Noise \ldots
	A.5	Locali	zation and Strengthened Assumptions
B	${ m Mis}$	cellan	eous Proofs
	B.1	Proofs	for Chapter 5 \ldots \ldots \ldots \ldots \ldots
		B.1.1	Proofs for Sections 5.2 and 5.3
		B.1.2	Proofs for Section 5.5 \ldots
		B.1.3	Proof of Theorem 5.25 \ldots \ldots \ldots \ldots
	B.2	Proofs	$for Chapter 8 \ldots $
		B.2.1	Preliminaries
		B.2.2	Estimates for the Increments of X and c
		B.2.3	Estimates for the Spot Volatility Estimators
		B.2.4	A Key Decomposition for Theorems 8.11 and 8.14
		B.2.5	Proof of Theorems 8.11 and 8.14 and Remark 8.15
		B.2.6	Proof of Theorems 8.12 and 8.17 \ldots
		B.2.7	Proof of Theorem 8.20 \ldots \ldots \ldots \ldots
	B.3	Proofs	for Chapter 10 \ldots
		B.3.1	Proof of Theorem 10.12 \ldots
		B.3.2	Proofs for Section 10.3
		B.3.3	Proofs for Section 10.4
		B.3.4	Proofs for Section 10.5
	B.4	Limit	Theorems for the Jumps of an Itô Semimartingale
	B.5	A Cor	nparison Between Jumps and Increments
	B.6	Proofs	for Chapter 11
		B.6.1	Proof of Theorems 11.11, 11.12, 11.18, 11.19, and
			Remark 11.14
		B.6.2	Proof of Theorem 11.21
		B.6.3	Proof of Theorem 11.23

Contents

B.7	Proofs	\mathbf{for}	Cha	pte	er 12									•		•								604
B.8	Proofs	\mathbf{for}	Cha	\mathbf{pt}	er 13													•	•					612
B.9	Proofs	for	Cha	pte	er 14					•						•		•	•		•	•		614
	B.9.1	Pro	oofs	for	Secti	on	14.	.1		•						•						•	•	614
	B.9.2	Pro	oofs	for	Secti	on	14.	.2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	619
Bibliog	raphy																							633
Index																								657

xv