Contents

1	Intro	oduction		1
	1.1	Definit	tion and Content of Gas Discharge	1
	1.2	Histor	y of Electrical Discharge Research	2
	1.3	Classif	fication of the Discharge	4
	1.4	Applic	ation of the Discharge	6
	1.5	Definit	tion and Content of Gas Insulation	8
	1.6	Histor	y and Application of Sulfur Hexafluoride	9
	1.7	Situati	on and Development of Environmentally	
		Friend	ly Insulating Gas	12
	Refe	rences	· · · · · · · · · · · · · · · · · · ·	17
r	Fund	domonto	le of Cae Discharge	10
4	7 um	Charge	ad Particles in the Process of Gas Discharge	10
	2.1		Photons	20
		2.1.1		20
		2.1.2	Crewed State Atoms (or Melewice)	21
		2.1.3	Ground State Atoms (or Molecules)	
			and Excited Atoms (or Molecules)	22
		2.1.4	Positive and Negative Ions	25
	2.2	Mover	nent of Charged Particles	26
		2.2.1	Thermal Motion of Charged Particles	26
		2.2.2	Diffusion Motion of Charged Particles	28
		2.2.3	Drift Motion of Charged Particles	29
	2.3	Collisi	on Interactions of Charged Particles	34
		2.3.1	Classification of Collision Between Particles	34
		2.3.2	Collision Energy Transfer	35
		2.3.3	Collision Characteristic Parameters	36
		2.3.4	Elastic Collisions of Electrons, Ions and Atoms	- 38
		2.3.5	Excitation and Ionization of Gas Atoms	39
		2.3.6	Gas Particle Excitation Transferring	41
		2.3.7	Disappearance of Charged Particles	42
	Refe	rences.		45

vii

3	Fune	lamenta	I Theory of Townsend Discharge	47
	3.1	Forma	tion and Development of Electronic Avalanche	47
		3.1.1	Formation of Electronic Avalanche	47
		3.1.2	α Process	50
		3.1.3	γ Process	53
	3.2	Self-Su	ustaining Discharge Criterion	54
		3.2.1	Gas Discharge Volt-Ampere Characteristics	54
		3.2.2	From Non-Self-Sustaining	
			to Self-Sustaining Discharge	57
		3.2.3	The Condition of Self-Sustained Discharge	58
	3.3	Pasche	en's Law	59
		3.3.1	Paschen's Law	59
		3.3.2	The Impact of Impurity Gases	
			on the Breakdown Potential	62
		3.3.3	The Impact of Electrodes on Breakdown Voltage	67
		3.3.4	The Impact of Electric Field Distribution	
			on Breakdown Voltage	68
		3.3.5	The Impact of External Ionization Source	
			on Breakdown Potential	69
	3.4	Towns	end Discharge Experiments	69
		3.4.1	The Steady-State Townsend Experiment (SST)	70
		3.4.2	Pulse Townsend Method (PT)	77
	Refe	rences		88
4	Fundamental Theory of Streamer and Leader Discharge			
	4.1	Stream	er Discharge Mechanism	89
		4.1.1	Basic Properties of Spark Discharge	90
		4.1.2	Streamer Discharge	93
	4.2	Long	Gap and Leader Discharge	113
		4.2.1	Experimental Study on the Long Gap	110
			Discharge in Air	113
		4.2.2	Discharge Process in Non-uniform Electric Field	114
	Refe	rences.		121
_	TI		- Lui- Mathala far Malalina Car Diahara	100
3	5 1	Monto	Carlo Simulation	123
	3.1	5 1 1	Latroduction of Concerch Monte Corlo Simulation	123
		5.1.1	Monte Carlo Simulation of Electron Avalanche	123
		5.1.2	Nonie Carlo Simulation of Electron Avalanche	100
		512	Electron Summe Departmentere	128
		5.1.5	from Monte Corle Simulation	121
	5 7	Daltan	From Monte Carlo Simulation	131
	J.Z		Introduction to Boltzmann Equation Method	140
		J.Z.I 5 2 2	Electron Swarm Darameters Calculated	140
		J.Z.Z	by Boltzmann Equation Method	140
	Rafa	rences	by Donzmann Equation Method	142
	Nele	ichees.		140

6	Diele	ctric Sti	rength of Atmosphere Air	149
	6.1	Breakd	lown Voltage Characteristics in Uniform	
		and Qu	asi-uniform Electric Fields	150
		6.1.1	Breakdown Characteristics	
			Under Continuous Voltages	150
		6.1.2	Breakdown Characteristics	
			Under Lightning Impulse Voltages	154
		6.1.3	Breakdown Characteristics	
			Under Operating Impulse Voltage	161
	6.2	Breakd	lown Characteristics in Extremely	
		Nonun	iform Electric Fields	164
		6.2.1	Breakdown Characteristics	
			Under Continuous Voltage	164
		6.2.2	Breakdown Characteristics	
			Under Lightning Impulse Voltage	168
		6.2.3	Breakdown Voltage Under Operating	
			Impulse Voltage	176
	6.3	Metho	ds to Improve Insulation Strength in Air	180
		6.3.1	Improve the Shape of Electrodes	180
		6.3.2	Use of Electric Field Distortion by Space Charges	182
		6.3.3	Use of Barrier in Extremely Nonuniform	
			Electric Fields	185
		6.3.4	Solid Insulating Coating Layer	189
		6.3.5	Use of High Pressure	189
		6.3.6	Use of High Vacuum	191
		6.3.7	Use of High-Dielectric-Strength Gases	192
	Refer	ences		194
7	Insul	ation Cl	haracteristics of Sulfur Hexafluoride (SF ₆)	195
	7.1	Basic I	Physical and Chemical Properties of SF ₆	195
		7.1.1	Molecular Structure	195
		7.1.2	Gas State Parameters	196
		7.1.3	Electronegativity and Thermal Performance	199
		7.1.4	Decomposition of SF ₆	201
	7.2	Breakc	lown Characteristics of SF ₆	204
		7.2.1	Breakdown Characteristics in Uniform	
			Electric Fields	204
		7.2.2	Breakdown Characteristics in Quasi-uniform Fields	205
		7.2.3	Breakdown Characteristics in Extremely	
			Non-uniform Fields	206
	7.3	Surface	e Discharge Characteristics of Solid Insulators	
		in SF ₆		209
		7.3.1	Effects of Electric Field Distribution	210
		7.3.2	Other Factors Affecting Solid Surface Discharge	
			Characteristics	212

	7.4	Factors	Affecting Insulation Properties of SF ₆	218
		7.4.1	Voltage of SE.	218
		742	Effect of Electric Field Uniformity	210
			on Breakdown Voltage of SF ₆	220
		7.4.3	Effect of Polarity on Breakdown Voltage of SF6	222
		7.4.4	Effect of Surface Roughness on Breakdown	
			Voltage of SF_6	226
	Refer	ences		229
8	Insula	ating Ch	naracteristics of SF ₆ Gas Mixtures	231
	8.1	Improv	ements of Gas Mixtures on Defects of SF ₆	231
		8.1.1	Liquefaction Temperature	231
		8.1.2	Insulating Properties	233
		8.1.3	Cost of Gas	237
		8.1.4	Environmental Protection	238
	8.2	Mixing	Characteristics of SF ₆ Gas Mixtures	238
		8.2.1	Mixing Ratio	238
		8.2.2	Changes of Mixing Ratio with Height	239
		8.2.3	Mixing Process	241
		8.2.4	Recovery of Gas Mixtures	241
	8.3	Insulati	ion Properties of Binary Mixtures of SF ₆	
		with Of	ther Gases	243
		8.3.1	Electrical Strength of SF ₆ /N ₂ Gas Mixtures	243
		8.3.2	Electrical Strength of SF ₆ /CO ₂ Gas Mixtures	250
		8.3.3	Contrast Between SF_6/N_2 and SF_6/CO_2	256
	8.4	Other M	Multivariate SF ₆ Gas Mixtures	257
		8.4.1	SF ₆ /He and SF ₆ /Ne Gas Mixtures	257
		8.4.2	SF_6/Ar , SF_6/Kr and SF_6/Xe Gas Mixtures	260
		8.4.3	Gas Mixtures Consisting of SF ₆	
			and Gases Containing Halogen Elements	265
	Refer	ences		270
9	Insula	ating Ch	naracteristics of Potential Alternatives	
	to Pu	re SF ₆ .		271
	9.1	Researc	ch Advances on Substitutes for SF ₆	271
		9.1.1	Significance of Research	271
		9.1.2	Current Research on Alternatives to SF ₆ Gas	274
	9.2	Insulati	ion Properties of $c-C_4F_8$ and Its Gas Mixtures	277
		9.2.1	$c-C_4F_8/CO_2$ Discharge Characteristics and Analysis	278
		9.2.2	$c-C_4F_8/CF_4$ Discharge Characteristics and Analysis	281
		9.2.3	$c-C_4F_8/N_2$ Discharge Characteristics and Analysis	283
		9.2.4	c-C ₄ F ₈ /N ₂ O Discharge Characteristics and Analysis	285
		9.2.5	The Influence of CO_2 , CF_4 , N_2 and N_2O	
			on the $(E/N)_{lim}$ of $c-C_4F_8$	288

	9.3	Insulati 9.3.1	ion Performance of CF ₃ I and Its Gas Mixtures Insulation Performance Analysis of CF ₃ I	289 290
		9.3.2	Feasibility Analysis of CF ₃ I and Its Gas Mixtures Used in C-GIS	294
	9.4	Insulati	ion Performance of Other Potential Alternative Gas	297
		9.4.1	Perfluoropropane (C_3F_8)	297
		9.4.2	Nitrous Oxide (N_2O)	303
		9.4.3	Trifluoromethane (CHF ₃)	304
		9.4.4	Fluorinated Carbon (CF ₄)	306
	Refer	ence		309
10	Development Prospects of Gas Insulation			
	10.1	Three S	Stages of Development of Gas Insulation	311
		10.1.1	Application and Development of Pure SF ₆ Gas	314
		10.1.2	Application and Development	
			of SF ₆ Gas Mixtures	316
		10.1.3	Development of Research on Environmentally	
			Friendly Insulation Gas	318
	10.2	Researc	ch and Development of $c-C_4F_8$	
		and Its	Gas Mixtures	324
		10.2.1	Properties of $c-C_4F_8$	324
		10.2.2	Further Research on c-C ₄ F ₈	
			and Its Mixtures Discharge Mechanism	327
		10.2.3	The Application and Development of $c-C_4F_8$	
			and Its Gas Mixtures	349
	10.3	Study a	and Development of CF ₃ I and Its Gas Mixtures	351
		10.3.1	Physical Properties of CF ₃ I Gas	351
		10.3.2	Further Study on Insulation Properties	
			of CF ₃ I Gas	352
		10.3.3	Research Tendency and Application of CF ₃ I	
			and Its Gas Mixtures	357
	Refer	ences		359
Ind	ex	• • • • • •		361