Inhalt

Einleitung \	/	
--------------	---	--

Autore	nverz	eichnis	XV

Thomas	s Aicher, Daniel Regulin und Birgit Vogel-Heuser		
1	Dynamische Anbindung und automatische Konfiguration modularer		
	Intralogistiksysteme mittels Agenten — 1		
1.1	Einleitung — 1		
1.2	Anforderungen des modellbasierten Ansatzes — 3		
1.3	Stand der Technik —— 5		
1.4	Modellbasierte Entwicklung von Modulen —— 8		
1.5	Evaluation der Rekonfigurationsdauer —— 12		
1.6	Zusammenfassung und Ausblick —— 17		
Literatu	ır —— 18		
	Beyer, Ramin Yousefifar, Karl-Heinz Wehking und Peter Göhner		
2	Agentenbasierte Planung von Intralogistiksystemen —— 21		
2.1	Einleitung —— 21		
2.2	Stand der Technik in der Planung von Intralogistiksystemen —— 23		
2.3	Struktur von Intralogistiksystemen —— 25		
2.4	Assistenzsystem zur Planung von Intralogistiksystemen —— 26		
2.5	Wissensmodellierung —— 30		
2.6	Umsetzung mithilfe von Softwareagenten —— 31		
2.7	Realisierung des Prototyps —— 35		
2.8	Vereinfachtes Anwendungsbeispiel —— 35		
2.9	Fazit und Ausblick —— 40		
2.10	Danksagung —— 41		
Literatu	ır —— 41		
Max Ho	ffmann, Tobias Meisen und Sabina Jeschke		
3	Agent OPC UA —— 43		
3.1	Einleitung und Motivation —— 43		
3.2	Von der vertikalen Integration zu einer intelligenten Vernetzung — 47		
3.3	Agent OPC UA – Ein skalierbarer Ansatz zur Integration		
	von Multiagentensystemen in reale Produktionsanlagen —— 55		
3.4	Systemübergreifende Nutzung von Agenten		
	zur intelligenten Produktionssteuerung — 59		
3.5	Zusammenfassung und Ausblick — 64		
	ır —— 65		

Thorste	n Schöler, Sebastian Pröll, Lucas Kögel und Thomas Hanka				
4	Software-Agenten zur Integration von Prozessen in der Fertigungs- und				
	Gebäudeautomatisierung —— 67				
4.1	Einleitung —— 67				
4.2	Anwendungsfälle —— 68				
4.3	Systemarchitektur zur Sensordatenfusion — 74				
4.4	Datenmodell —— 76				
4.5	Beispielhafte Prozesse —— 79				
4.6	Datenauswertung —— 83				
4.7	Zusammenfassung und Ausblick —— 87				
Literatu	ır —— 87				
	der Faul, Theresa Beyer, Matthias Klein, Desirée Vögeli, Rene Körner und l Weyrich				
5	Eine agentenbasierte Produktionsanlage am Beispiel				
	eines Montageprozesses — 89				
5.1	Einleitung —— 89				
5.2	Aufbau der Modellanlage —— 90				
5.3	Agentenkonzept zur Steuerung — 93				
5.4	Realisierung —— 100				
5.5	Anwendungsbeispiel —— 102				
5.6	Erweiterungen der Produktionsanlage —— 105				
5.7	Fazit —— 106				
Literatu	ır —— 107				
Robert	Brehm, Mareike Redder, Dmitry Kazakov und Cecil Bruce-Boye				
6	Agentenbasierte Regelung von Energieflüssen in Verteilnetzen				
	durch ein Softwarebussystem —— 109				
6.1	Zukünftige Energienetze —— 109				
6.2	Koordinierte Planung verteilter Speicherkapazitäten —— 114				
6.3	Implementierung der verteilten Steuerung durch eine verteilte				
	Middleware —— 119				
6.4	Schlussbetrachtung —— 123				
Literatu	ır —— 124				
Marco S	Schaarschmidt, Clemens Westerkamp und Hans Knöchel				
7	Anbindung von Software-Agenten an Sensorknoten und mobile				
	Systeme 125				
7.1	Einleitung —— 125				
7.2	Anwendungsfälle und Anforderungen —— 126				
7.3	Anforderungen an die Architektur —— 129				
7.4	Stand der Technik —— 131				

7.5	Architekturkonzept für ein intelligentes Sensor-Aktor-Netz —— 134

7.6 Ergebnisse —— **141**

7.7 Fazit und Ausblick — 146

Literatur — 147

Stichwortverzeichnis ---- 149