Inhaltsverzeichnis

Inhaltsverzeichnis	3
Vorwort für die deutsche Ausgabe	7
Danksagung für die englische Ausgabe	
Einleitung: Energie und die Steinzeit	
Die saubere Disruption des Energie- und Transportsystems	12
Eine klassische Silicon Valley-Technologiedisruption	
Null Grenzkosten und Disruptionswellen	14
Technologiekonvergenz und die saubere Disruption	
Partizipative Energie, innovative Geschäftsmodelle und Disruption	20
Das partizipative Energiemodell	
Die Ökonomie der Silicon-Valley-Technologie: steigende Erträge	
Steigende und sinkende Erträge: Technologie vs. Rohstoff-Förderung	
Netzwerkeffekte und die saubere Disruption des Energie- und Transportsystems	
Das Mooresche Gesetz und die saubere Disruption des Energie- und Transportsystems	
Was wird aus den 100 Jahren Erdöl (oder Erdgas oder Kohle oder Uran)?	25
Kapitel 1: Die solare Disruption	27
Billiger Solarstrom mit hohen Marktanteilen	30
Exponentielles Wachstum von Solarmärkten	
Sinkende Kosten für Photovoltaik	
Der schnell wachsende Photovoltaikausbau	34
Warum Solaranlagen in Amerika teurer als in Deutschland sind	35
Unsubventionierter Solarstrom vs. subventionierte Tarife der Energieversorger	36
Lancaster, eine Fallstudie für die Energiezukunft	37
Wie schnell kann sich die solare Disruption abspielen?	39
Direkt-TV: Disruptive Entwicklung auf Hausdächern	40
Das weltweit erste Solarkraftwerk, das rund um die Uhr Strom liefertliefert	
Solar-Salz-Akkus	42
Wie Energiespeicherung alles verändert	
Solarenergie auch nachts: Die solare Grundlast ist da	
Die solare Disruption ist da	44
Kapitel 2: Finanzen und die Disruption des Energiesystems	47
Neue Geschäftsmodelle für Solarenergie	48
Fallende Kosten für Solarmodule	
Kapitalkosten und die Kosten für Kapital	
Fallstudie: PACE Finanzierung in Sonoma County	51
Partizipative Finanzierung: Crowdfunding für Solarenergie	54

raitizipative rinanzierung. Wind in Danemark	
Die Golden Gate Bridge als Beispiel für partizipative Finanzierung	57
Mosaic: Ein Unternehmen, das sich der partizipativen Finanzierung verschrieben ha	t59
Warum Warren Buffett und die Wall Street Solarenergie mögen	61
Die Verbriefung erreicht die Solarbranche	64
Finanzierung von Solarprojekten durch Immobilienfonds	65
Ausdehnung der Master Limited Partnerships auf saubere Energie	67
Fazit: Die Billionen-Dollar-Chance der Solar-Finanzierung	70
(apitel 3: Strom 2.0 - Dezentrale, partizipative Energie und die Disruption der Stromverso	rger . 73
Australien: Wie die Zukunft aussieht	74
Wie Solarstrom die Gestaltung der Spitzenpreise für Endkunden umwälzen wird	76
Wie Solarenergie die Großhandelsstrommärkte umwälzt	77
Untersuchung der Kostenvorteile dezentraler Stromerzeugung	80
Wal-Mart, IKEA und die "Big Box"-Solardächer	82
Immobilienmanager entdecken Solarstrom	84
Der Roboter-Thermostat	85
Wie große Datenmengen die Erträge aus sauberer Energie erhöhen	89
Die Null-Disruption: Das "Exploratorium"- Wissenschaftsmuseum	90
Wie der dezentrale Aufbau den sauberen Energien hilft	91
Lernen Sie Rachel Rhodes, die weit entfernte Solar-Revolutionärin, kennen	92
An die Lobbys der Energieversorger auf der Welt: Vereinigt euch und hebt die Preise an!	94
Die nächste disruptive Welle: Dezentrale Stromspeicher	96
Die nächste disruptive Welle: Stromspeicherung vor Ort	97
Kodak: Ein Beispiel für Energieversorger	100
Der Juckreiz, der zwanzig Jahre anhält: Wie Solarstrom die konventionelle Stromerzeug überholt	_
Das Imperium schlägt zurück: David gegen Goliath in Kalifornien	
Noch ein Angriff des Imperiums: Besteuerung der Sonne	
Noch em / Migrin des imperiums. Desicuerung der somme	
(apitel 4: Die Elektroauto-Disruption	
Neun Gründe warum das E-Auto disruptiv wirkt	
1. Der Elektromotor ist fünfmal energieeffizienter	
2. Das Elektroauto ist beim Aufladen zehn Mal billiger	
3. Das Elektroauto ist zehn Mal so billig bei der Instandhaltung	
4. Das E-Auto wird den Sekundärmarkt für Benzin-Autos zerstören	
5. Kabelloses Laden	
6. Das E-Auto hat einen modularen Aufbau	
7. Große Datenmengen und schnelle Produktentwicklung	
8. Solarenergie und E-Autos sind 400 mal flächeneffizienter	
9. E-Autos können zur Speicherung im Netz und zu anderen Dienstleistungen beitragen	
Wie lange dauert es noch, bis die Disruption eintritt?	119

Disruptive Geschäftsmodell-Innovationen	121
Kostenlos Strom tanken	121
Kostenlose Wartung und Pflege	122
Meine Prognose von 2010 für das Ende von Benzin-Autos bis 2030	123
Meine neue Prognose für das Ende von Benzin-Autos bis 2030	125
Die allgemeine Massenbewegung hin zu E-Autos	128
Das letzte Benzin-Auto	129
Kapitel 5: Die Disruption durch autonome (selbstfahrende) Autos	133
Autos in der neuen Sharing Economy	
Autonome Autos: Die ultimative Disruptionsmaschine	
Benzin-Autos: die ultimativen Verlustmaschinen	137
Verlust von Leben	139
Verlust von Platz	
Verlust von Zeit	141
Verlust von Energie	142
Verlust von Geld	
Das Wettrennen hin zu vollständig autonomen Autos beschleunigt sich	
Exponentielle Verbesserung bei den Technikkosten	
Google, Apple und Außenseiter der Automobilbranche	
Auto-Betriebssysteme und "Der Gewinner bekommt alles"-Märkte	
Das Auto als Dienstleistung:	
Das endgültig disruptive Geschäftsmodell	
Innovative Geschäftsmodelle	
Disruption der Autoversicherungsbranche	152
Kapitel 6: Das Ende der Kernkraft	155
Partizipative Medien, "Citizen Science" und das Ende der Atomkraft	157
Vereinnahmung von Regulierungsbehörden, Stilllegungen und die unbezahlbar hohe	
Kosten der Atomkraft	158
Vereinnahmung von Regulierungsbehörden, Erzeugung und die unbezahlbar hohen	
Kosten der Atomkraft	
Atomsubventionen in Hülle und Fülle: Die Vogtle-Kraftwerke von Georgia Power	
Versichern des Nicht-Versicherbaren: Rettung der Atomkraft durch den Steuerzahler	
Die atomare Todesspirale	
Die Disruption des Atom-Zombies	171
Kapitel 7: Das Ende des Erdöls	173
Exponentielle Kostenverbesserung von PV im Vergleich zu Erdöl	174
Das Ende des kanadischen Ölsands	176
Die erste Solarnation der Welt	179
Das Ende des Diesels ist das Ende der Energiearmut	180

Wenn Solarenergie und E-Autos konvergieren	182
Welche Solarfläche wird benötigt, um alle Elektrofahrzeuge zu betreiben?	182
Beanspruchung von Land- und Wasserflächen für Öl und Gas	183
Lecks, Erdölkatastrophen und Kontamination	184
Zusammenfassung: Das Ende des Erdöls	184
Kapitel 8: Erdgas – Eine Brücke ins Nirgendwo	187
Ist Erdgas sauber?	188
Ist Erdgas günstig?	191
Solar- gegen Erdgas-Preise	194
Wasserschutz und das Ende des Erdgases	197
Exponentielle Investitionen in lineares Wachstum	197
Kapitel 9: Das Ende der Biokraftstoffe	201
Verschwendung von Wasserressourcen durch Biokraftstoffe	202
Wie viel Wasser wird für Biokraftstoffe benötigt?	205
Amerikas Aquifer	205
Atlanta in deinem Treibstofftank	205
Wie sieht es mit Biokraftstoffen der nächsten Generation aus?	207
Warum Solarenergie viel effizienter als Biokraftstoffe ist	208
Die Hungerspiele: Der finale Kampf zwischen überholten Biokraftstoffen und Erdöl	209
Kapitel 10: Das Ende der Kohle	211
Kohle – ein riskantes Angebot	213
Kohle – ein angekündigter Tod	214
Regulatorische Vereinnahmung: Wie Regierungen die Kohleindustrie schützen	217
China: Wasser für Kohle, nicht für Lebensmittel	220
Tod durch Kohle	223
Der endgültige Bruch mit der Kohle	225
Litaustumamaiakaia	221