Contents

1	Nonl	inear Th	eory	15
	1.1		nical Systems	18
		1.1.1	Differential Equation and Difference Equation	18
		1.1.2	Solution-Trajectory of a Dynamical System	18
	1.2	Autono	omous and Non-Autonomous Flows, Fixed-Point	20
		1.2.1	Definition of a Flow	20
		1.2.2	Continuous and Discrete System	21
		1.2.3	Definition of a Fixed Point and a Stable Fixed Point	21
	1.3	Introdu	action to the Resolution of Nonlinear Dynamical Systems	22
		1.3.1	Linearization of Nonlinear Models	22
		1.3.2	Linearization Generalized to State Space Models	23
	1.4	Resolu	tion of the Zero-Input Form	24
		1.4.1	Solution of the General State-Space Form	25
	1.5	Exister	nce and Uniqueness of Differential System Solutions	26
		1.5.1	Lipschitz Condition	26
	1.6	Stabilit	ry of a Dynamical System	27
	1.7	Floque	t Theory	28
		1.7.1	Stability, Floquet Matrix and Eigenvalues	28
		1.7.2	Transitions Stemming from the Linear Stability	
			Loss in Dissipative Systems	32
	1.8	The Bi	furcation Concept	33
		1.8.1	Codimension-1 Bifurcations of Fixed Points	33
		1.8.2	Subcritical Bifurcations of Fixed Points	35
		1.8.3	Codimension-1 Bifurcations of Periodic Orbits	35
	1.9	Hopf B	Sifurcation	36
		1.9.1	Codimension-1 Hopf Bifurcation	36
		1.9.2	Cusp and Generalized Hopf Bifurcations	39

xii Contents

1.10	Example	es of Dynamical System Resolution	
	1.10.1	A Stable System	
	1.10.2	An Unstable System with a Saddle Point	
1.11	Typolog	gy of Second-Order Linear Systems 43	
	1.11.1	Eigenvalues Interpretation	
	1.11.2	Some Representations in the Phase-Plane 44	
	1.11.3	Behavior Summary of Second-Order Linear Systems 46	
1.12	Example	es of Nonlinear System Resolution	
	1.12.1	A (Bilinear) Nonlinear System and a Saddle-Point 49	
	1.12.2	Pitchfork Bifurcation	
	1.12.3	Supercritical Hopf Bifurcation	
1.13	Poincare	é-Bendixson Theorem	
	1.13.1	Bendixson Criterion	
1.14	Center I	Manifold Theorem	
1.15	Definition	ons of Chaos	
1.16	Invarian	nt Sets and Attractors	
	1.16.1	Definition of an Attractor	J
	1.16.2	Strange Attractor	ļ
1.17	Some N	Ionlinear Dynamical Systems with Their Associated	
		ors 62	
1.18		vative and Dissipative Systems	J
1.19		onian and Optimal Growth Model 71	
	1.19.1	The Optimal Growth Model with Infinite Horizon 72	
1.20	Torus ar	nd Combination of Basic Frequencies	
1.21	Quasipe	eriodic Route to Chaos (Ruelle Takens),	
		ndau T ⁿ Tori	
	1.21.1	Description of Both Alternative Scenarios	,
	1.21.2	Experimental Illustrations	,
	1.21.3	Circle Map, Mode-Locking and Arnold Tongue 77	,
1.22	An App	proach of KAM Theory: Invariant Torus and Chaos 80)
	1.22.1	KAM Torus: Irrational Rotation Number	
1.23	Approac	ch of Dynamical Systems by Means of Pendulums	
	and Osc	cillators	,
1.24		-Stokes Equations of Flows, Attractors and Invariant	
	Measure	es	ŀ
	1.24.1	Navier-Stokes Equations: Basic Model)
	1.24.2	Navier-Stokes Dynamics: Invariant Ergodic	
		Measures, Characteristic Exponents	
		and Hilbert Spaces	
1.25	The Thr	ree-Body Problem (H. Poincaré) 98	;
1.26		incaré Section)
	1.26.1	Periodic Solution	
	1.26.2	Quasiperiodic Solution	
	1.26.3	Aperiodic Solution	
	1.26.4	Some Examples	

Contents xiii

1.27	From To	opological Equivalence of Flows Towards	
	the Poin	caré Map	103
	1.27.1	Rotation Number, Orientation-Preserving	
		Diffeomorphism and Topological Equivalence	
		of Flows	103
	1.27.2	Poincaré Map (First Return Map) and Suspension	
1.28	Lyapuno	ov Exponent	
	1.28.1	Description of the Principle	110
	1.28.2	Lyapunov Exponent Calculation	
	1.28.3	Other Writing and Comment	
	1.28.4	Interpretation of λ	
1.29	Measure	e of Disorder: Entropy and Lyapunov Characteristic	
		nt	113
1.30		oncepts of Nonlinear Theory Illustrated by	
		ensional Logistic Equation: The Paradigm	
		ılinear Model	114
	1.30.1	A Simple Dynamic Equation Which Contains	
		a Subjacent "Deterministic Chaos"	115
	1.30.2	Fixed Points	115
	1.30.3	Logistic Orbit	119
	1.30.4	Sensitive Dependence on Initial Conditions	
	1.30.5	Poincaré Sections of the Logistic Equation	122
	1.30.6	First-Return Map	
	1.30.7	Solutions and Stability of the Model	124
	1.30.8	Stability Theorem Applied to Logistic Equation	
	1.30.9	Generalization of the Stability of (Point) Solutions	
		of the Quadratic Map: Generic Stability	125
	1.30.10	Bifurcation Diagram	125
	1.30.11	Monotonic or Oscillatory Solution, Stability Theorem	125
	1.30.12	Lyapunov Exponent Applied to the Logistic Map	126
1.31	Coupled	Logistic Maps and Lce's	126
	1.31.1	Period-Doubling, Bifurcations	
		and Subharmonic Cascade	129
	1.31.2	Subharmonic Cascade, Accumulation Point	
	1.31.3	Stable Cycles and Super-Stable Cycles	136
	1.31.4	Cobweb Diagram	136
	1.31.5	Bifurcation Measure or Feigenbaum Constant	141
	1.31.6	Iterative Functions of the Logistic Equation	142
1.32	The Bift	urcation Paradox: The Final State is Predictable	
	if the Tr	ansition is Fast Enough	143
	1.32.1	Probability of a Final State and Speed of Transition	143
	1.32.2	Variation of the Control Parameter	
		of the Perturbated Logistic Equation	
1.33	Hyperbo	olicity and Kolmogorov Capacity Dimension	
	1 33 1	The Cantor Set	147

xiv Contents

		1.33.2	Finite System and Non-Intersection	
			of Phase Trajectories	149
		1.33.3	Hyperbolicity: Contradiction Between Dissipative	
			System and Chaos Solved by the Capacity Dimension	149
		1.33.4	Chaotic Attractor in a System of Dimension 1	152
		1.33.5	Measure of the Complexity Level of Attractors	153
	1.34	Nonline	arity and Hyperbolicity	153
		1.34.1	Homoclinic Tangle and Smale Horseshoes Map	153
		1.34.2	Smale Horseshoe: Structural Stability	154
		1.34.3	Hyperbolic Set (Anosov Diffeomorphisms)	
		1.34.4	Symbolic Dynamics	158
		1.34.5	Properties of the Smale Horseshoe Map	158
		1.34.6	Folding and Unfolding Mechanism: Horseshoe	
			and Symbolic Dynamics (Symbolic Coding)	160
		1.34.7	Smale-Birkhoff Homoclinic Theorem	161
		1.34.8	Hyperbolicity and Hartman-Grobman Theorem:	
			Hyperbolic Nonlinear Fixed Points	163
		1.34.9	Hyperbolic Structure	
		1.34.10	Homoclinic Orbit and Perturbation: Melnikov	174
		1.34.11	Shilnikov Phenomenon: Homoclinic Orbit in \mathbb{R}^3	180
	1.35	Transition	ons and Routes to Chaos	182
		1.35.1	Transition to Chaos Through Intermittency	182
		1.35.2	Saddle Connections ("Blue Sky Catastrophes")	
			and Reminder About the Stability Boundaries	188
	1.36		al Correlation: Periodicity, Quasiperiodicity,	
		Aperiod	icity	199
	1.37	Power S	pectral Density	
		1.37.1	Characterization of Dynamical Systems	201
		1.37.2	Different Types of Spectra	203
	1.38	Van der	Pol Oscillator and Spectra	212
	1.39	Reconst	ruction Theorems	220
		1.39.1	Embedding, Whitney Theorem (1936)	220
		1.39.2	Takens Theorem (1981): A Delay	
			Embedding Theorem	222
		1.39.3	(n, J)-Window Concept	225
2			SSA and Brownian Motion	
	2.1	Delay M	fodel Applied to Logistic Equation (Medio)	228
		2.1.1	Nonlinearities and Lags	228
		2.1.2	Application to the Logistic Equation	230
	2.2	Singular	Spectrum Analysis	234
		2.2.1	Singular Spectrum Analysis Principle:	
			"Windowing", Eigenvector and Projection	234
		2.2.2	SSA Applied to the Logistic Equation with Delay	
			Function	239

Contents xv

		2.2.3	SSA Applied to a Financial Series (Cac40)	241
	2.3	Fractio	onal Brownian Motions	
		2.3.1	Brownian Motion and Random Walk	244
		2.3.2	Capacity Dimension of a Fractional Brownian Motion .	247
		2.3.3	Introduction to Persistence and Loops Concepts	250
		2.3.4	Comment on DS/TS Process and Brownian Motions	252
D۵	II C	tatisties s	of Compley and Chaptic Nanlineau Dynamics, Invania	+
		Events	of Complex and Chaotic Nonlinear Dynamics: Invaria	nts
3	Nonli	inear Pro	ocesses and Discrimination	257
	3.1		ders: Statistics and Probability	
		3.1.1	Random Experiment and Measurement	
		3.1.2	Reduction Principles of Estimators: Invariance	
			Principle, Unbias Principle, Asymptotic Principle	258
		3.1.3	Definition of a Process	
		3.1.4	Probability Law, Cumulative Distribution	
			Function, and Lebesgue Measure on R	. 259
		3.1.5	Integral with Respect to a Measure	
		3.1.6	Density and Lebesgue Measure Zero	
		3.1.7	Random Variables and Transfer Formula	
		3.1.8	Some Laws of Probabilities	
		3.1.9	Autocovariance and Autocorrelation Functions	
	3.2	The AF	RMA Processes: Stock Markets and Random Walk	
		3.2.1	Reminders: ARMA Processes and Stationarity	
		3.2.2	Dickey-Fuller Tests Applied to French Stock	
			Index (Cac40)	. 266
		3.2.3	Correlogram Analysis of the Cac40 Sample	
		3.2.4	Estimation of the Model	
	3.3	Econor	metrics of Nonlinear Processes	
		3.3.1	Stochastic Processes: Evolution of Linear	
			Modeling Towards Nonlinear Modeling	274
		3.3.2	Non-Parametric Test of Nonlinearity: BDS Test	
			of the Linearity Hypothesis Against an	
			Unspecified Hypothesis	275
	3.4	The No	on-Parametric Analysis of Nonlinear Models	
		3.4.1	Parametric Analysis: Identification and Estimation	
			of Parametric Models	277
		3.4.2	Non-Parametric Analysis	278
		3.4.3	Construction of a Non-Parametric Estimator	
			of Density: From Windowing to Kernel Concept	278
		3.4.4	Estimator of Density and Conditional Expectation	
			of Regression Between Two Variables	281
		3.4.5	Estimator of the Conditional Mode of a Dynamics	
		3.4.6	A First Estimator of Dynamics by Regression	

xvi Contents

		3.4.7	Estimator by Polynomial Regression	. 284
		3.4.8	Estimator by the k-Nearest Neighbors Method: KNN	. 284
		3.4.9	Estimator by the Radial Basis Function Method: RBF.	. 285
		3.4.10	A Neural Network Model: Multi-Layer	
			Perceptron and Limit of Decision	. 286
	3.5	First Sta	atistical Tests of Validation of Chaotic Process	
		Detection	on: Brock Test and LeBaron and Scheinkman	
		Randon	n Mixture Test	. 294
		3.5.1	Residual Test of Brock (1986)	
		3.5.2	Scheinkman and LeBaron Random Mixture Test	
			(1989): The Test Weakly Rejects the Hypothesis	
			of Deterministic Chaos and Always Regards	
			Financial Markets as Stochastic Processes	. 296
	3.6	Long M	femory Processes	
		3.6.1	ARFIMA Process	
	3.7	Process	es Developed from ARFIMA Process	
		3.7.1	GARMA Processes: To Integrate the Persistent	
			Periodic Behaviors of Long Memory	. 302
		3.7.2	ARCH Processes Towards FIGARCH Processes:	
			To Integrate the Persistence of Shocks	
			in the Volatility of Long Memory Processes	. 303
	3.8	Rejection	on of the "Random Walk" Hypothesis for Financial	
			s: Lo and MacKinlay Test on the Variance	
			VYSE (1988)	. 305
		3.8.1	Specification of the Test: Variances	
			of the Increments for Their Ratio and Difference	. 306
	3.9	Estimat	tion of the Fractional Integration Parameter d	
			Furst Exponent H of an ARFIMA(p,d,q) Process	. 312
		3.9.1	General Information About Long Memory (LRD)	
			Estimations and Self-Similarity	. 312
	3.10	Estimat	ion of the Parameter d by the Spectral Methods	
			RFIMA Process	. 313
		3.10.1	Estimation of d Based on the Form of the Spectral	
			Density: Regression Method of the Geweke	
			and Porter-Hudak Estimator (GPH: 1983)	. 313
		3.10.2	Estimation of d by the Logarithm of the Power	
			Spectrum: Estimator of Janacek (1982)	. 315
	3.11	Abry-V	/eitch Estimator (1998) of the Hurst Exponent –	
			t Analysis of Long Memory Processes: An Effective	
			ch of Scale Phenomena	. 317
	_			
4		tical and	Topological Invariants and Ergodicity	. 329
	4.1		easurement of a Deterministic Chaos Is Invariant in Time.	. 329
		4.1.1	Ergodic Theory and Invariant Measurement	
			Associated with a Dynamics	. 329

Contents xvii

		4.1.2	The Measure of Probability of a Deterministic Chaotic System Is Invariant in Time			
	rt III S d Singu		and Time-Frequency Theories and Waveforms: Regularity			
5	Spect	tral and '	Time-Frequency Analyses and Signal Processing 343			
	5.1	Fourier	Theory and Wavelets			
		5.1.1	Contribution of the Fourier Analysis to Regular			
			and Stationary Series: An Approach of Linearities 343			
		5.1.2	Contribution of the Wavelet Analysis to Irregular			
			and Non-Stationary Time Series: An Approach			
			of Nonlinearities			
		5.1.3	A Statistical Theory of the Time-Frequency			
			Analysis Remains to Be Developed			
	5.2		f Typology of Information Transformations in Signal			
		Analys	sis			
		5.2.1	Fourier, Wavelet and Hybrid Analyses350			
	5.3	The Fo	ourier Transform			
		5.3.1	Fourier Series and Fourier Transform			
		5.3.2	Interpretation of Fourier Coefficients			
	5.4	The Gabor Transform: A Stage Between the Short Term				
			r Transform and the Wavelet Transform			
		5.4.1	The Gabor Function			
		5.4.2	The Gabor Transform with a Sliding Window:			
			The "Gabor Wavelet"			
	5.5		avelet Transform			
		5.5.1	A Wavelet ψ Is a Function of Zero Average,			
			i.e. Zero-Integral: $\int_{-\infty}^{+\infty} \psi(t)dt = 0$			
		5.5.2	Wavelets and Variable-Window			
		5.5.3	The Wavelet Transform			
		5.5.4	Wavelet Transform and Reconstruction			
	5.6		ction of Different Window Mechanisms by Type			
			sformation			
	5.7		et Transform of Function or Time Series			
		5.7.1	The Wavelets Identify the Variations of a Signal 367			
		5.7.2	Continuous Wavelet Transform			
		5.7.3	Discrete Wavelet Transform			
		5.7.4	Wavelet Models: "Gauss Pseudo-Wavelet",			
			Gauss-Derivative, Morlet and Sombrero			
	5.8		g and Sampling			
	5.9		Scale Plane (b,a), Cone of Influence			
		5.9.1	Cone of Influence and Time-Scale Plane			
		5.9.2	Time–Frequency Plane			

xviii Contents

5.10	Heisenb	perg Boxes and Time—Frequency Plane
	5.10.1	Concept of Time-Frequency Atom: Concept
		of Waveform Family
	5.10.2	Energy Density, Probability Distribution
		and Heisenberg Boxes
	5.10.3	Spectrogram, Scalogram and Energy Conservation 381
	5.10.4	Reconstruction Formulas of Signal: Stable
		and Complete Representations
5.11	Wiener	Theory and Time-Frequency Analysis
	5.11.1	Introduction to the Correlogram-Periodogram
		Duality: Similarities and Resemblances Researches 384
	5.11.2	Elements of Wiener Spectral Theory and Extensions 388
5.12	The Co	nstruction of Orthonormal Bases and Riesz Bases 399
	5.12.1	Signal of Finite Energy399
	5.12.2	Reminders: Norms and Banach Spaces
	5.12.3	Reminders: Inner Products and Hilbert Spaces 400
	5.12.4	Orthonormal Basis
	5.12.5	Riesz Basis, Dual Family and Biorthogonality 401
	5.12.6	Orthogonal Projection
	5.12.7	The Construction of Orthonormal Basis
		and Calculation of the "Detail" Coefficient
		on Dyadic Scale
5.13	Concep	t of Frames
	5.13.1	The Fourier Transform in $L^2(\mathbb{R})$
	5.13.2	Frames
	5.13.3	Tiling of the Time-Frequency Plane by Fourier
		and Wavelets Bases
5.14	Linear	and Nonlinear Approximations of a Signal
		ection on an Orthonormal Basis
	5.14.1	General Framework of the Linear Approximation
		and Karhunen-Loève Optimal Basis
	5.14.2	Nonlinear Approximation and Adaptive Basis
		Dependent on the Signal: Regularity and Singularity 410
	5.14.3	Donoho and Johnstone Nonlinear Estimation:
		Algorithm with Threshold
	5.14.4	Nonlinear Estimators are More Efficient
		to Minimize the Bayesian Risk: Optimization
		by Minimax
	5.14.5	Approximation by the "Matching Pursuit":
		A General Presentation
	5.14.6	Comparison of Best Bases and Matching Pursuits 426
5.15	The Mu	altiresolution Analysis Notion
	5.15.1	(Quadratic) Conjugate Mirror Filter
	5.15.2	Multiresolution Analysis 428

Contents xix

5.16	Singularity and Regularity of a Time Series:					
	Self-Sir	nilarities, Multifractals and Wavelets				
	5.16.1	Lipschitz Exponent (or Hölder Exponent):				
		Measurement of Regularity and Singularity by				
		Means of the Hölder Functions $\alpha(t)$				
	5.16.2	n Wavelet Vanishing Moments and Multiscale				
		Differential Operator of Order n				
	5.16.3	Regularity Measures by Wavelets				
	5.16.4	Detection of Singularities: The Maxima of the				
		Modulus of Wavelet Transform are Associated				
		with the Singularities				
	5.16.5	Self-Similarities, Wavelets and Fractals				
	5.16.6	Spectrum of Singularity: Multifractals, Fractional				
		Brownian Motions and Wavelets				
5.17	The Co	ntinuous Wavelet Transform				
	5.17.1	Application to a Stock Exchange Index: Cac40 447				
5.18	Wigner	-Ville Density: Representation of the Fourier				
		velet Atoms in the Time-Frequency Plane 456				
	5.18.1	Cohen's Class Distributions and Kernels				
		of Convolution				
5.19	Introduction to the Polyspectral Analysis					
		Nonlinearities)				
	5.19.1	Polyspectral Analysis Definition for Random				
		Processes with Zero-Average				
	5.19.2	Polyspectra and Nonlinearities				
5.20	Polyspectral and Wavelet Bicoherences					
	5.20.1	A New Tool of Turbulence Analysis: Wavelet				
		Bicoherence				
	5.20.2	Compared Bicoherences: Fourier and Wavelet 474				
5.21	Argume	ents in Favor of Wavelet Analysis Compared				
		er Analysis				
	5.21.1	Signal Deformation by Diffusion of Peaks,				
		Discontinuities and Errors in the Fourier Transform 475				
	5.21.2	Wavelets are Better Adapted to the Signal				
		by Respecting Discontinuities and Peaks, Because				
		they Identify the Variations				
	5.21.3	Wavelets are Adapted to Non-Stationary Signals 477				
	5.21.4	Signal Energy is Constant in the Wavelet Transform 477				
	5.21.5	Wavelets Facilitate the Signal "Denoizing"				
	5.21.6	Wavelets are Less Selective in Frequency				
		than the Fourier Transform				
	5.21.7	The Hybrid Transformations Allow an Optimal				
		Adaptation to Transitory Complex Signals 478				

xx Contents

6	The A	tomic De	ecompositions of Signals
	6.1		id Transformation: Evolution of the "Matching
		Pursuit"	Towards the Mallat and Zhang Version
		6.1.1	Construction of Sinusoid and Wavelet Packets 480
		6.1.2	Reminders About the Time-Frequency Atoms 483
		6.1.3	Reminders About the Matching Pursuit
		6.1.4	Improvement of the Algorithm
		6.1.5	Mallat and Zhang Version of Matching Pursuit
			with Dictionaries of Time-Frequency Atoms g_{γ} 487
	6.2	Applica	tions of the Different Versions of the "Matching
		Pursuit"	to a Stock-Exchange Index: Cac40
		6.2.1	Matching Pursuit: Atomic Decomposition
			with Fourier Dictionary
		6.2.2	Matching Pursuit: Atomic Decomposition
			with Wavelet Dictionary
		6.2.3	An Application of the Mallat and Zhang
			"Matching Pursuit" Version: An Adaptive Atomic
			Decomposition of a Stock-Exchange Index with
			Dictionaries of Time-Frequency Atoms g_{γ}
	6.3	Ramsey	and Zhang Approach of Stock Market Crises
		by Mate	ching Pursuit with Time-Frequency Atom
		Diction	aries: High Intensity Energy Periods 503
		6.3.1	The Dirac Function Would Allow to Distinguish
			Isolated and Intense Explosions: Internal Shocks
			and External Shocks
	6.4	Comme	nts About Time-Frequency Analysis
Part	IV E	conomic	Growth, Instability and Nonlinearity
_			
			conomic Growth Models
	7.1		and Distribution in the Neoclassical Framework 511
		7.1.1	Aggregates and National Income
		7.1.2	Neo-Classical Production Function
			and Diminishing Returns
		7.1.3	Conditions of the Optimal Combination
			of the Factors K and L
		7.1.4	Optimal Combination of Factors, and Tendency
			Towards a Zero Profit in the Long Term
		7.1.5	The Ground Rent and the Ricardo Growth Model 517
		7.1.6	The Expansion Path and the Limitation
			of the Nominal National Income Growth
		7.1.7	Stationary Per Capita Income of the Solow Model
			in the Long Term 520

Contents xxi

7.2	Linear	Technical Relations Outside the Neo-Classical	
	Theory	Framework of the Distribution: Von Neumann	
	Model	of Semi-Stationary Growth (1946)	521
	7.2.1	Primacy of the Organization of "Technical Processes"	
	7.2.2	Presentation of the Von Neumann Model	
	7.2.3	The Optimal Path and the Golden Rule in the Von	
		Neumann Model	525
	7.2.4	Comments About Von Neumann and Solow Models.	528
7.3	Stabilit	ty, Stationarity and Diminishing Returns	
	of the C	Capital: The Solow Model (1956)	531
	7.3.1	Diminishing Returns and Stationarity of the Per	
		Capita Product	531
	7.3.2	The Reference Model	531
	7.3.3	Introduction of the Technological Progress	
		into the Solow Model and Balanced Growth Path	539
	7.3.4	Evolution of the Solow Model	
		and the Neo-Classical Models	540
7.4		action of Externalities, and Instability: Endogenous	
	Growth	n Theory	543
	7.4.1	Interrupted Growth in the Solow Model	
		and Long-Term Stationarity	543
	7.4.2	Introduction of Positive Externalities	544
	7.4.3	Endogenous Growth Without Externality	548
7.5		ve to the Research by Profit Sharing: The Romer	
	Model	(1986–1990)	548
	7.5.1	Basic Components of the Romer Model	549
	7.5.2	Imperfect Competition, Externalities and R&D	
		Optimality: The Reconciliation in the Romer Model.	553
	7.5.3	Romer Model and Transfer of Technology	
		Between Countries	555
7.6	Nonlin	earities and Effect of Economic Policies	
		Endogenous Growth Models	558
	7.6.1	AK Model: The Limit Case of Solow Model	
		for $\alpha = 1$	558
	7.6.2	Linearities and Endogenous Growth	
	7.6.3	Externalities and AK Models	561
	7.6.4	Nonlinearities and Effect of Economic Policies	
		in Endogenous Growth Models: Transitory or	
		Permanent Effects	563
7.7		of Instability and Saddle-Point: Optimal Growth	
	Model	of Ramsey without Technological Progress	
	7.7.1	Intertemporal Choices and Utility Function	
	7.7.2	The Production Function	
	773	Mechanism of Ontimization and Trajectories	566

xxii Contents

	7.8	Basin o	f Instability and Saddle-Point: Optimal Growth
		Model	of Cass Koopmans Ramsey with Technological Progress 569
		7.8.1	Enterprises and Production Function
		7.8.2	Households and Maximization of the Utility
			Function Under the Budget Constraint 570
		7.8.3	Dynamics and Balanced Growth Path 573
		7.8.4	Comments About the Trajectories
			and Maximization of the Level of Consumption 578
		7.8.5	Equilibria and Instability of Solutions 579
		7.8.6	Endogenous Growth Without Externality,
			and Saddle Point580
	7.9	Day Mo	odel (1982): Logistic Function, Periodic and Chaotic
		Behavio	ors
		7.9.1	The Model
		7.9.2	From Dynamics of Capital Towards Logistic Function 582
		7.9.3	Periodic and Chaotic Solutions of the Dynamics of $k \dots 583$
	7.10	•	n Model (1992): Imperfect Information and Strange
		Attracto	or583
		7.10.1	Imperfect Information, Price Uncertainty
			and Adaptive Expectations 584
		7.10.2	Chaotic Growth and Intertemporal Non-Optimality 586
	7.11		tability of Stock Markets, and Random Processes:
		Model	of Portfolio Choice588
		7.11.1	Dynamics of Accumulation of k and m
		7.11.2	The Solution is a Saddle-Point
	7.12		in's Cyclical Growth Model592
	7.13		ophe Theory and Kaldor Model594
	7.14		oping Generations Models: Cycles, Chaos 597
		7.14.1	Benhabib-Day (1982)
		7.14.2	Grandmont (1985)
	7.15		l Growth Models: Convergence, Cycles, Chaos 600
		7.15.1	Boldrin-Woodford (1990)
		7.15.2	Turnpike Theorem (and Anti-Turnpike Theorem) 602
		7.15.3	Benhabib-Nishimura Optimal Growth Model
			(1979): Equilibrium Limit Cycle
	7.16		earities and Cycle Theory
		7.16.1	Nonlinearities and Chaos Theory
		7.16.2	Real Business Cycle Theory and Concept of Shock 606
0	Tree:		D
8			Random Walk
	8.1		Efficiency and Random Walk: Stock Market
			and Economic Growth
		8.1.1 8.1.2	Stock Exchange: Perfect Competition Market
		0.1.2	Stock Exchange: Advanced Indicator
			of Economic Activity

Contents xxiii

		8.1.3	Indicators of Value Creation
		8.1.4	Corporate Governance: Market Imperfection Factors 613
		8.1.5	Modigliani-Miller Theorem: Neutrality
			of Finance on Market Perfection
		8.1.6	Role of Expectations on Equilibria and Markets:
			Expectation Concepts
		8.1.7	The Lucas Critique of Rational Expectations
			and the Superneutrality of Economic Policies
		8.1.8	Rational Bubbles and Sunspots Models 623
		8.1.9	Efficiency and Instability of Financial Markets:
			A Non-Probabilisable Universe
		8.1.10	The Question of the Imperfection, Inefficiency
			and Non-Random Walk of Stock Markets
Co	nclusio	n	
_			
Pos	stface .		
A	Math	omotico	641
A.	A.1		ns, Metrics, Topological Structures
	A.I		
		A.1.1 A.1.2	Relations and Diffeomorphisms
	A.2		Metric Spaces and Topological Spaces
	A.2		
		A.2.1	Normed Spaces
		A.2.2	PreHilbert Spaces
		A.2.3	Banach Spaces and Hilbert Spaces
		A.2.4	Differentiable Operators
		A.2.5	Banach Fixed-Point Theorem
		A.2.6	Differential and Integral Operators
	A.3		x Number Field, Holomorphic Functions
		-	gularities
		A.3.1	Complex Number
		A.3.2	Construction of the Field C of Complex Numbers
		A.3.3	Geometrical Representation of Complex Numbers 662
		A.3.4	Operations in the Gauss Complex Plane
		A.3.5	Algebraic Closure of \mathbb{C}
		A.3.6	Alembert–Gauss Theorem
		A.3.7	Exponential, Logarithm in \mathbb{C}
		A.3.8	Others Properties of \mathbb{C} , and Topology Theorem of $\mathbb{C} \dots 666$
		A.3.9	Riemann Sphere (Compactification)
		A.3.10	Holomorphic Function, Cauchy-Riemann
			Conditions and Harmonic Function
		A.3.11	Singularity of Holomorphic Functions, Laurent
			Series and Meromorphic Function

xxiv Contents

A.4	Surfaces	and Manifolds	. 673
	A.4.1	Closed Surfaces, Surfaces with Boundary	. 673
	A.4.2	Classification of Closed Surfaces	. 676
	A.4.3	Orientability and Topological Invariance	. 678
	A.4.4	Connectivity Number	. 679
	A.4.5	Riemann Surfaces	. 679
	A.4.6	Manifolds and Differentiable Topology	
A.5	Topolog	y	
A.6		ry and Axioms	
	A.6.1	Absolute Geometry	
	A.6.2	Euclidean and Non-Euclidean Metrics	
	A.6.3	Affine and Projective Planes	. 691
	A.6.4	Projective Metric	
	A.6.5	Order and Orientation	
A.7	Series E	xpansions	
	A.7.1	Taylor Polynomials and Remainders	
	A.7.2	Applications to Local Extrema	
	A.7.3	Taylor Series	
	A.7.4	Analytic Functions	
	A.7.5	Binomial Series	
A.8	Distribu	tion Theory	
	A.8.1	Derivation of Distributions	
	A.8.2	Multiplication	
	A.8.3	Support of Distributions	
	A.8.4	Convolution of Distributions	
	A.8.5	Applications to Partial Differential Equations	
		with Constant Coefficients	. 704
	A.8.6	Use of Elementary Solutions	
A.9	Approxi	imation Theory	
	A.9.1	Best Approximations	
A.10	Interpol	ation Theory	
	A.10.1	Lagrange Method	
	A.10.2	Newton-Gregory method	
	A.10.3	Approximation by Interpolation Polynomials	
A.11	Numerio	cal Resolution of Equations	
	A.11.1	Simple Iterative Methods	
	A.11.2	Newton-Raphson Method	
	A.11.3	Linear Interpolation Method (Regula Falsi)	
	A.11.4	Horner's Schema	
	A.11.5	Graeffe Method	
A.12		Order Differential Equations	
	A.12.1	General Resolution of Linear Differential	
		Equations of Second-Order	. 714
	A.12.2	Resolution of Linear Homogeneous Equations	
		Particular Solution of a Non-Homogeneous Equation	

Contents xxv

	A.12.4	Linear Differential Equations of Second-Order			
		with Constant Coefficients	715		
A.13	Other Reminders				
	A.13.1	Basic Reminders in Mathematics and Statistics	717		
Bibliograp	ohy		723		
Index		• • • • • • • • • • • • • • • • • • • •	733		