Contents

Chapter IV. Stiff Problems – One-Step Methods

IV.1	Examples of Stiff Equations	2
	Chemical Reaction Systems	3
	Electrical Circuits	4
	Diffusion	6
	A "Stiff" Beam	8
	High Oscillations	11
	Exercises	11
IV.2	Stability Analysis for Explicit RK Methods	15
	Stability Analysis for Euler's Method	15
	Explicit Runge-Kutta Methods	16
	Extrapolation Methods	18
	Analysis of the Examples of IV.1	18
	Automatic Stiffness Detection	21
	Step-Control Stability	24
	A PI Step Size Control	28
	Stabilized Explicit Runge-Kutta Methods	31
	Exercises	37
IV.3	Stability Function of Implicit RK-Methods	40
	The Stability Function	40
	A-Stability	42
	L-Stability and $A(\alpha)$ -Stability	44
	Numerical Results	46
	Stability Functions of Order $\geq s$	47
	Padé Approximations to the Exponential Function	48
	Exercises	49
IV.4	Order Stars	51
	Introduction	51
	Order and Stability for Rational Approximations	56
	Stability of Padé Approximations	58
	Comparing Stability Domains	58
	Rational Approximations with Real Poles	61
	The Real-Pole Sandwich	62
	Multiple Real-Pole Approximations	67
	Exercises	70
IV.5	Construction of Implicit Runge-Kutta Methods	71
1	Gauss Methods	71
	Radau IA and Radau IIA Methods	72

X Contents

	Lobatto IIIA, IIIB and IIIC Methods The W -Transformation Construction of Implicit Runge-Kutta Methods Stability Function Positive Functions Exercises	75 77 83 84 86 89
IV.6	Diagonally Implicit RK MethodsOrder ConditionsStiffly Accurate SDIRK MethodsThe Stability FunctionMultiple Real-Pole Approximations with $R(\infty)=0$ Choice of MethodExercises	91 92 96 98 99 100
IV.7	Rosenbrock-Type Methods. Derivation of the Method Order Conditions The Stability Function Construction of Methods of Order 4 Higher Order Methods Implementation of Rosenbrock-Type Methods The "Hump" Methods with Inexact Jacobian (W-Methods) Exercises	102 102 104 108 108 111 111 113 114 117
IV.8	Implementation of Implicit Runge-Kutta MethodsReformulation of the Nonlinear SystemSimplified Newton IterationsThe Linear SystemStep Size SelectionImplicit Differential EquationsAn SDIRK-CodeSIRK-MethodsExercises	118 118 119 121 123 127 128 128 130
IV.9	Extrapolation Methods Extrapolation of Symmetric Methods Smoothing The Linearly Implicit Mid-Point Rule Implicit and Linearly Implicit Euler Method Implementation Exercises	131 131 133 134 138 139 142
IV.10	Numerical Experiments The Codes Used Twelve Test Problems Results and Discussion Partitioning and Projection Methods Exercises	143 143 144 152 160 165
IV.11	Contractivity for Linear ProblemsEuclidean Norms (Theorem of von Neumann)Error Growth Function for Linear ProblemsSmall Nonlinear PerturbationsContractivity in $\ \cdot\ _{\infty}$ and $\ \cdot\ _1$ Study of the Threshold Factor	167 168 169 172 175 176

Absolutely Monotonic Functions	178 179	
IV.12 B-Stability and Contractivity.	180	
One-Sided Lipschitz Condition	180	
<i>B</i> -Stability and Algebraic Stability	181	
Some Algebraically Stable IRK Methods	183	
AN-Stability	184	
Reducible Runge-Kutta Methods	187	
The Equivalence Theorem for S-Irreducible Methods	188	
Error Growth Function	193	
Computation of $\varphi_B(x)$	195	
Exercises	199	
IV.13 Positive Quadrature Formulas and B-Stable RK-Methods	201	
Quadrature Formulas and Related Continued Fractions	201	
Number of Positive Weights	203	
Characterization of Positive Quadrature Formulas	205	
Necessary Conditions for Algebraic Stability	206	
Characterization of Algebraically Stable Methods	209	
The "Equivalence" of A - and B - Stability	211	
Exercises	213	
IV.14 Existence and Uniqueness of IRK Solutions	215	
Existence	215	
A Counterexample	217	
Influence of Perturbations and Uniqueness	218	
Computation of $\alpha_0(A^{-1})$	220	
Methods with Singular A	222	
Lobatto IIIC Methods	223	
Exercises	223	
IV.15 B-Convergence	225	
The Order Reduction Phenomenon	225	
The Local Error	228	
Error Propagation	229	
B-Convergence for Variable Step Sizes	230	
B-Convergence Implies Algebraic Stability	232	
The Trapezoidal Rule	234	
Order Reduction for Rosenbrock Methods	236	
Exercises	237	
Chapter V. Multistep Methods for Stiff Problems		

V.1	Stability of Multistep Methods	240
	The Stability Region	240
	Adams Methods	242
	Predictor-Corrector Schemes	244
	Nyström Methods	245
	BDF	
	The Second Dahlquist Barrier	247
	Exercises	249
V.2	"Nearly" A-Stable Multistep Methods	250
	$A(\alpha)$ -Stability and Stiff Stability	250
	High Order $A(\alpha)$ -Stable Methods	
	Approximating Low Order Methods with High Order Ones	

	A Disc Theorem Accuracy Barriers for Linear Multistep Methods Exercises	254 254 259
V.3	Generalized Multistep Methods Second Derivative Multistep Methods of Enright Second Derivative BDF Methods Blended Multistep Methods Extended Multistep Methods of Cash Multistep Collocation Methods Methods of "Radau" Type Exercises	261 265 266 267 270 273 275
V.4	Order Stars on Riemann Surfaces Riemann Surfaces Poles Representing Numerical Work Order and Order Stars The "Daniel and Moore Conjecture" Methods with Property C General Linear Methods Dual Order Stars Exercises	279 279 283 284 286 288 290 295 297
V. 5	Experiments with Multistep Codes The Codes Used Exercises	300 300 304
V.6	One-Leg Methods and G-Stability One-Leg (Multistep) Methods Existence and Uniqueness G-Stability An Algebraic Criterion The Equivalence of A-Stability and G-Stability A Criterion for Positive Functions Error Bounds for One-Leg Methods Convergence of A-Stable Multistep Methods Exercises	305 305 306 307 309 310 313 314 317 319
V. 7	Convergence for Linear Problems Difference Equations for the Global Error The Kreiss Matrix Theorem Some Applications of the Kreiss Matrix Theorem Global Error for Prothero and Robinson Problem Convergence for Linear Systems with Constant Coefficients Matrix Valued Theorem of von Neumann Discrete Variation of Constants Formula Exercises	321 323 326 328 329 330 332 337
V.8	Convergence for Nonlinear Problems Problems Satisfying a One-Sided Lipschitz Condition Multiplier Technique Multipliers and Nonlinearities Discrete Variation of Constants and Perturbations Convergence for Nonlinear Parabolic Problems Exercises	339 339 342 346 348 349 354
V.9	Algebraic Stability of General Linear Methods G-Stability	356 356

Algebraic Stability	357
AN-Stability and Equivalence Results	
Multistep Runge-Kutta Methods	362
Simplifying Assumptions	363
Quadrature Formulas	365
Algebraically Stable Methods of Order 2s	366
<i>B</i> -Convergence	368
Exercises	370

Chapter VI. Singular Perturbation Problems and Index 1 Problems

VI.1	Solving Index 1 ProblemsAsymptotic Solution of van der Pol's EquationThe ε -Embedding Method for Problems of Index 1State Space Form MethodA Transistor AmplifierProblems of the Form $Mu' = \varphi(u)$ Convergence of Runge-Kutta MethodsExercises	372 374 374 375 376 378 380 381
VI.2	Multistep Methods Methods for Index 1 Problems Convergence for Singular Perturbation Problems Exercises	382 382 383 387
VI.3	Epsilon Expansions for Exact and RK Solutions Expansion of the Smooth Solution Expansions with Boundary Layer Terms Estimation of the Remainder Expansion of the Runge-Kutta Solution Convergence of RK-Methods for Differential-Algebraic Systems Existence and Uniqueness of the Runge-Kutta Solution Influence of Perturbations Estimation of the Remainder in the Numerical Solution Numerical Confirmation Perturbed Initial Values Exercises	388 389 391 392 394 397 398 399 403 405 406
VI.4	Rosenbrock Methods Definition of the Method Derivatives of the Exact Solution Trees and Elementary Differentials Taylor Expansion of the Exact Solution Taylor Expansion of the Numerical Solution Order Conditions Convergence Stiffly Accurate Rosenbrock Methods Construction of RODAS, a Stiffly Accurate Embedded Method. Inconsistent Initial Values Exercises	411 412 415 416 418 420 422 424
VI.5	Extrapolation Methods Linearly Implicit Euler Discretization Perturbed Asymptotic Expansion Order Tableau	426 428

	Error Expansion for Singular Perturbation Problems	433
	Dense Output	438
	Exercises	441
VI.6	Quasilinear Problems	442
	Example: Moving Finite Elements	442
	Problems of Index One	445
	Numerical Treatment of $C(y)y' = f(y)$	446
	Extrapolation Methods	447
	Exercises	448

Chapter VII. Differential-Algebraic Equations of Higher Index

VII.1 The Index and Various Examples	452
Linear Equations with Constant Coefficients	452
Differentiation Index	454
Differential Equations on Manifolds	457
The Perturbation Index	459
Control Problems	461
Mechanical Systems	463
Exercises	465
VII.2 Index Reduction Methods	468
Index Reduction by Differentiation	468
Stabilization by Projection	470
Differential Equations with Invariants	472
Methods Based on Local State Space Forms	474
Overdetermined Differential-Algebraic Equations	477
Unstructured Higher Index Problems	478
Exercises	480
VII.3 Multistep Methods for Index 2 DAE	481
Existence and Uniqueness of Numerical Solution	482
Influence of Perturbations	484
The Local Error	485
Convergence for BDF	486
General Multistep Methods	489
Solution of the Nonlinear System by Simplified Newton	490
Exercises	491
VII.4 Runge-Kutta Methods for Index 2 DAE	492
The Nonlinear System	492
Estimation of the Local Error	494
Convergence for the y-Component	496
Convergence for the z-Component	497
Collocation Methods	498
Superconvergence of Collocation Methods	500
Projected Runge-Kutta Methods	502
Summary of Convergence Results	504
Exercises	505
VII.5 Order Conditions for Index 2 DAE	506
Derivatives of the Exact Solution	506
Trees and Elementary Differentials	
Taylor Expansion of the Exact Solution	508

Derivatives of the Numerical Solution Order Conditions Simplifying Assumptions Projected Runge-Kutta Methods Exercises	510 512 514 515 518
VII.6 Half-Explicit Methods for Index 2 Systems Half-Explicit Runge-Kutta Methods Extrapolation Methods β-Blocked Multistep Methods Exercises	519 520 525 527 529
VII.7 Computation of Multibody Mechanisms Description of the Model Fortran Subroutines Computation of Consistent Initial Values Numerical Computations A Stiff Mechanical System Exercises	530 530 533 535 536 541 542
VII.8 Symplectic Methods for Constrained Hamiltonian Systems Properties of the Exact Flow First Order Symplectic Method SHAKE and RATTLE The Lobatto IIIA-IIIB Pair Composition Methods Backward Error Analysis (for ODEs) Backward Error Analysis on Manifolds Exercises	543 544 545 548 550 554 555 559 562
Appendix. Fortran Codes Driver for the Code RADAU5 Subroutine RADAU5 Subroutine RADAUP Subroutine RODAS Subroutine SEULEX Problems with Special Structure Use of SOLOUT and of Dense Output	565 566 568 574 574 575 575 576
Bibliography	577
Symbol Index	605
Subject Index	607