BRIEF CONTENTS

CONTENTS

			FEACE	.,
1	Biochemistry: An Evolving Science 1	PK	EFACE	٧
2	Protein Composition and Structure 29	СН	APTER 1	
3	Exploring Proteins and Proteomes 69	Bio	ochemistry: An Evolving Science	1
4	DNA, RNA, and the Flow of Genetic		,	
_	Information 113	1.1	Biochemical Unity Underlies Biological Diversity	2
_	Exploring Genes and Genomes 145	1.2	DNA Illustrates the Interplay Between Form and	
6	Exploring Evolution and Bioinformatics 185		Function	4
7	Hemoglobin: Portrait of a Protein in Action 207		DNA is constructed from four building blocks Two single strands of DNA combine to form	4
8	Enzymes: Basic Concepts and Kinetics 233		a double helix	5
	Catalytic Strategies 273		DNA structure explains heredity and the storage	
	Regulatory Strategies 309		of information	6
	Carbohydrates 341	1.3	Concepts from Chemistry Explain the Properties	
	Lipids and Cell Membranes 373		of Biological Molecules	6
	Membrane Channels and Pumps 403		The formation of the DNA double helix as a key example. The double helix can form from its component strands	le 6 6
	Signal-Transduction Pathways 437		Covalent and noncovalent bonds are important for the	J
	Metabolism: Basic Concepts and Design 463		structure and stability of biological molecules	7
	Glycolysis and Gluconeogenesis 491		The double helix is an expression of the rules of chemistry	10
	The Citric Acid Cycle 541		The laws of thermodynamics govern the behavior	10
	Oxidative Phosphorylation 573		of biochemical systems	11
	The Light Reactions of Photosynthesis 619		Heat is released in the formation of the double helix	13
20	The Calvin Cycle and the Pentose Phosphate Pathway 645		Acid-base reactions are central in many biochemical processes	14
21	Glycogen Metabolism 679		Acid-base reactions can disrupt the double helix	15
	Fatty Acid Metabolism 709		Buffers regulate pH in organisms and in the laboratory	16
	Protein Turnover and Amino Acid	1.4	The Genomic Revolution Is Transforming	
	Catabolism 751		Biochemistry, Medicine, and Other Fields	17
24	The Biosynthesis of Amino Acids 787		Genome sequencing has transformed biochemistry and other fields	18
25	Nucleotide Biosynthesis 821		Environmental factors influence human biochemistry	20
26	The Biosynthesis of Membrane Lipids and Steroids 849		Genome sequences encode proteins and patterns of expression	21
27	The Integration of Metabolism 889	4.5	DEALD IV	
28	Drug Development 921		PENDIX	22
29	DNA Replication, Repair, and Recombination 949	VIS	sualizing Molecular Structures: Small Molecules	23
30	RNA Synthesis and Processing 983	۸۵	PPENDIX:	
31	Protein Synthesis 1021		nctional Groups	24
32	The Control of Gene Expression in Prokaryotes 1057	ru	nctional dioups	24
33	The Control of Gene Expression in		HAPTER 2	
	Eukaryotes 1075	Pr	otein Composition and Structure	29
	Sensory Systems 1097 ⊙	2.1	Proteins Are Ruilt from a Poportaire	
	The Immune System 1119	۷.1	Proteins Are Built from a Repertoire of 20 Amino Acids	31
36	Molecular Motors 1151 ⑤	2.2	Primary Structure: Amino Acids Are Linked	
•	Chapters online only		by Peptide Bonds to Form Polypeptide Chains	37

	Proteins have unique amino acid sequences specified by genes	39		A protein purification scheme can be quantitatively evaluated Ultracentrifugation is valuable for separating	75
	Polypeptide chains are flexible yet conformationally restricted	40		biomolecules and determining their masses	8.
2.3	Secondary Structure: Polypeptide Chains Can			Protein purification can be made easier with the use of recombinant DNA technology	82
	Fold into Regular Structures Such As the Alpha Helix, the Beta Sheet, and Turns and Loops	42	3.2	Immunology Provides Important Techniques with Which to Investigate Proteins	83
	The alpha helix is a coiled structure stabilized by intrachain hydrogen bonds	42		Antibodies to specific proteins can be generated	83
	Beta sheets are stabilized by hydrogen bonding between polypeptide strands	44		Monoclonal antibodies with virtually any desired specificity can be readily prepared	85
	Polypeptide chains can change direction by making reverse turns and loops	46		Proteins can be detected and quantified by using an enzyme-linked immunosorbent assay	86
2.4	Tertiary Structure: Proteins Can Fold	46		Western blotting permits the detection of proteins separated by gel electrophoresis	87
	into Globular or Fibrous Structures Fibrous proteins provide structural support			Co-immunoprecipitation enables the identification of binding partners of a protein	88
2.5	for cells and tissues	49		Fluorescent markers make the visualization of proteins in the cell possible	89
	Quaternary Structure: Polypeptide Chains Can Assemble into Multisubunit Structures	51	3.3	Mass Spectrometry Is a Powerful Technique for the	he
2.6	The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure	52		Identification of Peptides and Proteins Peptides can be sequenced by mass spectrometry	89 92
	Amino acids have different propensities for forming α helices, β sheets, and turns	54		Proteins can be specifically cleaved into small peptides to facilitate analysis	93
	Protein folding is a highly cooperative process	55		Genomic and proteomic methods are complementary	94
	Proteins fold by progressive stabilization of intermediates rather than by random search	56		The amino acid sequence of a protein provides valuable information	95
	Prediction of three-dimensional structure from sequence remains a great challenge	57		Individual proteins can be identified by mass spectrometry	96
	Some proteins are inherently unstructured and can exist in multiple conformations	58	3.4	Peptides Can Be Synthesized by	
	Protein misfolding and aggregation are associated with some neurological diseases	59	2.5	Automated Solid-Phase Methods Three-Dimensional Protein Structure	97
	Posttranslational modifications confer new capabilities to proteins	60	3.5	Can Be Determined by X-ray Crystallography, NMR Spectroscopy, and Cryo-Electron Microscop	ov 100
ΑP	PENDIX			X-ray crystallography reveals three-dimensional structure in atomic detail	100
Vis	sualizing Molecular Structures: Proteins	64		Nuclear magnetic resonance spectroscopy can reveal the structures of proteins in solution	103
СН	APTER 3			Cryo-electron microscopy is an emerging method	
Ex	ploring Proteins and Proteomes	69		of protein structure determination	103
	The proteome is the functional representation		AP	PENDIX	
	of the genome	70	Pro	blem-Solving Strategies	108
3.1	The Purification of Proteins Is an Essential First Step in Understanding Their Function	70	CH.	APTER 4	
	The assay: How do we recognize the protein we are looking for?	74	DN	IA, RNA, and the Flow of Genetic	
	Proteins must be released from the cell to be purified	71 71	Infe	ormation	113
	Proteins can be purified according to solubility, size, charge, and binding affinity	72	4.1	A Nucleic Acid Consists of Four Kinds	
	Proteins can be separated by gel electrophoresis and displayed	75		of Bases Linked to a Sugar-Phosphate Backbone RNA and DNA differ in the sugar component and one of the bases	114
				and one of the pases	

	Nucleotides are the monomeric units of nucleic acids DNA molecules are very long and have directionality	115 116		Restriction fragments can be separated by gel electrophoresis and visualized	148
4.2	A Pair of Nucleic Acid Strands with Complementar	y		DNA can be sequenced by controlled termination of replication	149
	Sequences Can Form a Double-Helical Structure The double helix is stabilized by hydrogen bonds	117		DNA probes and genes can be synthesized by automated solid-phase methods	150
	and van der Waals interactions DNA can assume a variety of structural forms	117 119		Selected DNA sequences can be greatly amplified by the polymerase chain reaction	151
	Some DNA molecules are circular and supercoiled Single-stranded nucleic acids can adopt elaborate structures	120		PCR is a powerful technique in medical diagnostics, forensics, and studies of molecular evolution	152
4.3	The Double Helix Facilitates the Accurate	121		The tools for recombinant DNA technology have been used to identify disease-causing mutations	153
	Transmission of Hereditary Information Differences in DNA density established the validity	122	5.2	Recombinant DNA Technology Has Revolutionized All Aspects of Biology	154
	of the semiconservative replication hypothesis The double helix can be reversibly melted	122 123		Restriction enzymes and DNA ligase are key tools in forming recombinant DNA molecules	154
4.4	Unusual circular DNA exists in the eukaryotic nucleus DNA Is Replicated by Polymerases That Take	124		Plasmids and λ phage are choice vectors for DNA cloning in bacteria	155
4.4	Instructions from Templates	125		Bacterial and yeast artificial chromosomes Specific genes can be cloned from digests	157
	DNA polymerase catalyzes phosphodiester-bridge formation	125 126		of genomic DNA Complementary DNA prepared from mRNA	158
4.5	The genes of some viruses are made of RNA Gene Expression Is the Transformation of DNA	120		can be expressed in host cells Proteins with new functions can be created through	159
	Information into Functional Molecules	127		directed changes in DNA Recombinant methods enable the exploration	160
	Several kinds of RNA play key roles in gene expression	127		of the functional effects of disease-causing mutations	163
	All cellular RNA is synthesized by RNA polymerases	128	5.3	Complete Genomes Have Been Sequenced and Analyzed	163
	RNA polymerases take instructions from DNA templates	129		The genomes of organisms ranging from bacteria to multicellular eukaryotes have been sequenced	164
	Transcription begins near promoter sites and ends at terminator sites	130		The sequence of the human genome has been completed	165
	Transfer RNAs are the adaptor molecules in protein synthesis	131		Next-generation sequencing methods enable the rapid determination of a complete genome sequence	166
4.6	Amino Acids Are Encoded by Groups of Three Bases Starting from a Fixed Point	132		Comparative genomics has become a powerful research tool	
	Major features of the genetic code	133			168
	Messenger RNA contains start and stop signals for protein synthesis	134 135	5.4	Eukaryotic Genes Can Be Quantitated and Manipulated with Considerable Precision	169
4.7	The genetic code is nearly universal Most Eukaryotic Genes Are Mosaics of Introns	155		Gene-expression levels can be comprehensively examined	169
	and Exons RNA processing generates mature RNA	135 136		New genes inserted into eukaryotic cells can be efficiently expressed	171
	Many exons encode protein domains	136		Transgenic animals harbor and express genes introduced into their germ lines	172
ΑP	PENDIX			Gene disruption and genome editing provide clues to gene function and opportunities for new	
Pro	blem-Solving Strategies	140		therapies RNA interference provides an additional tool for	172 176
	APTER 5			disrupting gene expression Tumor-inducing plasmids can be used to introduce	
Ex	ploring Genes and Genomes	145		new genes into plant cells Human gene therapy holds great promise for medicine	177 178
5.1	The Exploration of Genes Relies on Key Tools	146		Some Province in the control of the	-/.
	Restriction enzymes split DNA into	147		PENDIX	123
	specific fragments	17/	Bio	ochemistry in Focus	180

				C-marativaly	212
	APTER 6		7.2	Hemoglobin Binds Oxygen Cooperatively Oxygen binding markedly changes the quaternary	212
Exp	loring Evolution and Bioinformatics	185		structure of hemoglobin	213
6.1	Homologs Are Descended from a Common Ancestor	186		Hemoglobin cooperativity can be potentially explained by several models	214
6.2	Statistical Analysis of Sequence Alignments			Structural changes at the heme groups are transmitted to the $\alpha_1\beta_1-\alpha_2\beta_2$ interface	215
0.2	Can Detect Homology The statistical significance of alignments can be	187		2,3-Bisphosphoglycerate in red cells is crucial in determining the oxygen affinity of hemoglobin	216
	estimated by shuffling	189		Carbon monoxide can disrupt oxygen transport by hemoglobin	217
	Distant evolutionary relationships can be detected through the use of substitution matrices Databases can be searched to identify homologous	190	7.3	Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect	217
	sequences	193	7 1	Mutations in Genes Encoding Hemoglobin	
6.3	Examination of Three-Dimensional Structure Enhances Our Understanding of		7.4	Subunits Can Result in Disease Sickle-cell anemia results from the aggregation	220
	Evolutionary Relationships Tertiary structure is more conserved than	194		of mutated deoxyhemoglobin molecules	220
	primary structure	194		Thalassemia is caused by an imbalanced production of hemoglobin chains	221
	Knowledge of three-dimensional structures can aid in the evaluation of sequence alignments	195		The accumulation of free α-hemoglobin chains is prevented	222
	Repeated motifs can be detected by aligning sequences with themselves	196		Additional globins are encoded in the human genome	223
	Convergent evolution illustrates common solutions to biochemical challenges	196	AP	PENDIX	
	Comparison of RNA sequences can be a source of insight into RNA secondary structures	197		ding Models Can Be Formulated in Quantitative ms: The Hill Plot and the Concerted Model	225
6.4	Evolutionary Trees Can Be Constructed on the Basis of Sequence Information	100	AP	PENDIX	
	Horizontal gene transfer events may explain unexpected	198 I	Bio	chemistry in Focus	227
	branches of the evolutionary tree	199	C 11	ADTED	
6.5	Modern Techniques Make the Experimental Exploration of Evolution Possible	200		APTER 8 zymes: Basic Concepts and Kinetics	233
	Ancient DNA can sometimes be amplified and sequenced	200	8 1	Enzymes Are Powerful and Highly Specific	
	Molecular evolution can be examined experimentally	200	5. 1	Catalysts	234
ΑP	PENDIX			Many enzymes require cofactors for activity Enzymes can transform energy from one form	235
Bio	ochemistry in Focus	203		into another	236
ΑP	PENDIX:		8.2	Gibbs Free Energy Is a Useful Thermodynamic	
Pro	oblem-Solving Strategies	204		Function for Understanding Enzymes The free-energy change provides information about	236
CI	ADTED 7			the spontaneity but not the rate of a reaction	237
	APTER 7 emoglobin: Portrait of a Protein in Action			The standard free-energy change of a reaction is related to the equilibrium constant	237
		207		Enzymes alter only the reaction rate and not the	231
7.1	Binding of Oxygen by Heme Iron	208		reaction equilibrium	239
	Changes in heme electronic structure upon oxygen binding are the basis for functional imaging studies	210	8.3	Enzymes Accelerate Reactions by Facilitating the Formation of the Transition State	240
	The structure of myoglobin prevents the release of	210		The formation of an enzyme-substrate complex is the first step in enzymatic catalysis	244
	reactive oxygen species Human hemoglobin is an assembly of four	210		The active sites of enzymes have some common feature	241 s 242
	myoglobin-like subunits	211		The binding energy between enzyme and substrate is important for catalysis	243

8.4	The Michaelis–Menten Model Accounts for the Kinetic Properties of Many Enzymes	244	9.2	Carbonic Anhydrases Make a Fast Reaction Faster	286
	Kinetics is the study of reaction rates The steady-state assumption facilitates a description	244		Carbonic anhydrase contains a bound zinc ion essential for catalytic activity	287
	of enzyme kinetics	245		Catalysis entails zinc activation of a water molecule	288
	Variations in $K_{\rm M}$ can have physiological consequences $K_{\rm M}$ and $V_{\rm max}$ values can be determined by several means	247 247		A proton shuttle facilitates rapid regeneration of the active form of the enzyme	290
	$K_{ m M}$ and $V_{ m max}$ values are important enzyme characteristics	248	9.3	Restriction Enzymes Catalyze Highly Specific DNA-Cleavage Reactions	291
	$k_{\rm cat}/K_{ m M}$ is a measure of catalytic efficiency Most biochemical reactions include multiple substrates	249 251		Cleavage is by in-line displacement of 3'-oxygen from phosphorus by magnesium-activated water	
	Allosteric enzymes do not obey Michaelis-Menten kinetics	252		Restriction enzymes require magnesium for catalytic activity	294
8.5	Enzymes Can Be Inhibited by Specific Molecules The different types of reversible inhibitors are	253		The complete catalytic apparatus is assembled only within complexes of cognate DNA molecules,	
	kinetically distinguishable Irreversible inhibitors can be used to map the	254		ensuring specificity Host-cell DNA is protected by the addition	295
	active site	256		of methyl groups to specific bases Type II restriction enzymes have a catalytic core	297
	Penicillin irreversibly inactivates a key enzyme in bacterial cell-wall synthesis	258		in common and are probably related by horizontal gene transfer	298
	Transition-state analogs are potent inhibitors of enzymes	260	94	Myosins Harness Changes in Enzyme	
	Enzymes have impact outside the laboratory or clinic	261	2,1	Conformation to Couple ATP Hydrolysis to Mechanical Work	298
8.6	Enzymes Can Be Studied One Molecule at a Time	261		ATP hydrolysis proceeds by the attack of water on the gamma phosphoryl group	
	PENDIX			Formation of the transition state for ATP hydrolysis is associated with a substantial conformational	
	rymes Are Classified on the Basis of the Types	264		change	300
	Reactions That They Catalyze	264		The altered conformation of myosin persists for a substantial period of time	301
	ochemistry in Focus	265		Scientists can watch single molecules of myosin move	303
	PENDIX			Myosins are a family of enzymes containing P-loop	
	blem-Solving Strategies	266		structures	303
	Siem Serving Strategies		APP	ENDIX	
СН	APTER 9			lem-Solving Strategies	306
		273			
-	,		СНА	PTER 10	
	A few basic catalytic principles are used by many enzymes	274		ulatory Strategies	309
9.1	Proteases Facilitate a Fundamentally Difficult Reaction	275	10.1	Aspartate Transcarbamoylase Is Allosterically Inhibited by the End Product of Its Pathway	310
	Chymotrypsin possesses a highly reactive serine residue	276		Allosterically regulated enzymes do not follow Michaelis-Menten kinetics	311
	Chymotrypsin action proceeds in two steps linked by a covalently bound intermediate	277		ATCase consists of separable catalytic and regulatory subunits	312
	Serine is part of a catalytic triad that also includes histidine and aspartate	278		Allosteric interactions in ATCase are mediated by large changes in quaternary structure	312
	Catalytic triads are found in other hydrolytic enzymes	281		Allosteric regulators modulate the T-to-R equilibrium	316
	The catalytic triad has been dissected by site-directed mutagenesis	282	10.2	Isozymes Provide a Means of Regulation	
	Cysteine, aspartyl, and metalloproteases are other major classes of peptide-cleaving enzymes	283		Specific to Distinct Tissues and Developmental Stages	317
	Protease inhibitors are important drugs	285		- c. c. c. p. montain star Soo	517

10.3	Covalent Modification Is a Means of Regulating Enzyme Activity Kinases and phosphatases control the extent of protein	318		is made of chains of glucose Human milk oligosaccharides protect newborns from infection	350 352
	phosphorylation	319			002
	Phosphorylation is a highly effective means of regulating the activities of target proteins	321	11.3	Carbohydrates Can Be Linked to Proteins to Form Glycoproteins	352
	Cyclic AMP activates protein kinase A by altering the quaternary structure	321		Carbohydrates can be linked to proteins through asparagine (N-linked) or through serine or threonine (O-linked) residues	352
	Mutations in protein kinase A can cause Cushing's syndrome	322		The glycoprotein erythropoietin is a vital hormone	353
	Exercise modifies the phosphorylation of many			Glycosylation functions in nutrient sensing	354
10.4	proteins Many Enzymes Are Activated by Specific Proteoly	323 vtic		Proteoglycans, composed of polysaccharides and protein, have important structural roles	354
10.4	Cleavage	323		Proteoglycans are important components	
	Chymotrypsinogen is activated by specific cleavage			of cartilage	355
	of a single peptide bond	324		Mucins are glycoprotein components of mucus	356
	Proteolytic activation of chymotrypsinogen leads to the formation of a substrate-binding site	325		Chitin can be processed to a molecule with a variety of uses	357
	The generation of trypsin from trypsinogen leads to the activation of other zymogens	325		Protein glycosylation takes place in the lumen of the endoplasmic reticulum and in the	357
	Some proteolytic enzymes have specific inhibitors	326		Golgi complex Specific enzymes are responsible for oligosaccharide	331
	Serpins can be degraded by a unique enzyme Blood clotting is accomplished by a cascade of zymoge			assembly	358
	activations Prothrombin must bind to Ca ²⁺ to be converted	328		Blood groups are based on protein glycosylation patterns	359
	to thrombin	329		Errors in glycosylation can result in pathological conditions	359
	Fibrinogen is converted by thrombin into a fibrin clot Vitamin K is required for the formation	329		Oligosaccharides can be "sequenced"	360
	of γ-carboxyglutamate	331	11 /	Lectins Are Specific Carbohydrate-Binding	
	The clotting process must be precisely regulated	332	11.7	Proteins	361
	Hemophilia revealed an early step in clotting	333		Lectins promote interactions between cells and within cells	36
APP	PENDIX			Lectins are organized into different classes	36.
Bio	chemistry in Focus	335		Influenza virus binds to sialic acid residues	36.
APF	PENDIX		4.0.0		
Prol	blem-Solving Strategies	336		ENDIX	
			Bio	chemistry in Focus	365
CHA	APTER 11		APF	ENDIX	
Car	bohydrates	341	Pro	plem-Solving Strategies	366
11.1	Monosaccharides Are the Simplest		СН	APTER 12	
	Carbohydrates	342	Lip	ids and Cell Membranes	373
	Many common sugars exist in cyclic forms Pyranose and furanose rings can assume different conformations	344		Many Common Features Underlie the Diversity	3/3
	Glucose is a reducing sugar	346		of Biological Membranes	37
	Monosaccharides are joined to alcohols and amines through glycosidic bonds	347	12.1	Fatty Acids Are Key Constituents of Lipids Fatty acid names are based on their parent	37
	Phosphorylated sugars are key intermediates in	348		hydrocarbons	37
44.5	energy generation and biosyntheses	348		Fatty acids vary in chain length and degree of unsaturation	37
11.2	Monosaccharides Are Linked to Form Complex Carbohydrates		12.2	There Are Three Common Types of	51
	Sucrose, lactose, and maltose are the common	349		Membrane Lipids	27
	disaccharides	240		Phospholipids are the major class	37
	Glycogen and starch are storage forms of glucose	349		of membrane lipids	37

	Membrane lipids can include carbohydrate moieties Cholesterol is a lipid based on a steroid nucleus	378 378		Multidrug resistance highlights a family of membrane pumps with ATP-binding cassette domains	411
	Archaeal membranes are built from ether lipids with branched chains A membrane lipid is an amphipathic molecule	379	13.3	Lactose Permease Is an Archetype of Secondary Transporters That Use One Concentration	
	containing a hydrophilic and a hydrophobic moiety	379		Gradient to Power the Formation of Another	413
12.3	Phospholipids and Glycolipids Readily Form Bimolecular Sheets in Aqueous Media	380	13.4	Specific Channels Can Rapidly Transport Ions Across Membranes	415
	Lipid vesicles can be formed from phospholipids Lipid bilayers are highly impermeable to ions	381		Action potentials are mediated by transient changes in Na ⁺ and K ⁺ permeability	415
	and most polar molecules	382		Patch-clamp conductance measurements reveal the activities of single channels	416
12.4	Proteins Carry Out Most Membrane Processes Proteins associate with the lipid bilayer in a variety	383		The structure of a potassium ion channel is an archetype for many ion-channel structures	417
	of ways Proteins interact with membranes in a variety of ways	384 384		The structure of the potassium ion channel reveals the basis of ion specificity	418
	Some proteins associate with membranes through covalently attached hydrophobic groups	388		The structure of the potassium ion channel explains its rapid rate of transport	420
	Transmembrane helices can be accurately predicted from amino acid sequences	388		Voltage gating requires substantial conformational changes in specific ion-channel domains	421
12.5	Lipids and Many Membrane Proteins Diffuse	200		A channel can be inactivated by occlusion of the pore: the ball-and-chain model	422
	Rapidly in the Plane of the Membrane The fluid mosaic model allows lateral movement	390		The acetylcholine receptor is an archetype for ligand-gated ion channels	423
	but not rotation through the membrane Membrane fluidity is controlled by fatty acid	391		Action potentials integrate the activities of several ion channels working in concert	424
	composition and cholesterol content Lipid rafts are highly dynamic complexes formed	391		Disruption of ion channels by mutations or chemicals can be potentially life-threatening	426
	between cholesterol and specific lipids All biological membranes are asymmetric	392 393	13.5	Gap Junctions Allow Ions and Small Molecules to Flow Between Communicating Cells	427
12.6	Eukaryotic Cells Contain Compartments Bounded by Internal Membranes	393	13.6	Specific Channels Increase the Permeability of Some Membranes to Water	429
APP	ENDIX		APP	ENDIX	
Bioc	hemistry in Focus	399	Biod	hemistry in Focus	431
	PTER 13		APP	ENDIX	
Mei	mbrane Channels and Pumps	403	Problem-Solving Strategies		432
	The expression of transporters largely defines the metabolic activities of a given cell type	404	СНА	PTER 14	
13.1	The Transport of Molecules Across a Membrane May Be Active or Passive	404	Sigi	nal-Transduction Pathways	437
	Many molecules require protein transporters to cross	405		Signal transduction depends on molecular circuits	438
	membranes Free energy stored in concentration gradients can be quantified	405	14.1	Epinephrine and Angiotensin II Signaling: Heterotrimeric G Proteins Transmit Signals and Reset Themselves	439
13.2	Two Families of Membrane Proteins Use ATP Hydrolysis to Pump Ions and Molecules Across			Ligand binding to 7TM receptors leads to the activation of heterotrimeric G proteins	440
	Membranes P-type ATPases couple phosphorylation and	406		Activated G proteins transmit signals by binding to other proteins	442
	conformational changes to pump calcium ions across membranes	407		Cyclic AMP stimulates the phosphorylation of many target proteins by activating protein kinase A	443
	Digitalis specifically inhibits the Na ⁺ -K ⁺ pump by blocking its dephosphorylation	410		G proteins spontaneously reset themselves through GTP hydrolysis	443
	P-type ATPases are evolutionarily conserved and play a wide range of roles	410		Some 7TM receptors activate the phosphoinositide cascade	444

	Calcium ion is a widely used second messenger	445		Phosphoryl-transfer potential is an important form of cellular energy transformation	470
	Calcium ion often activates the regulatory protein calmodulin	447		ATP may have roles other than in energy and signal transduction	472
14.2	Insulin Signaling: Phosphorylation Cascades Are Central to Many Signal-Transduction Processes	447	15.3	The Oxidation of Carbon Fuels Is an Important Source of Cellular Energy	472
	The insulin receptor is a dimer that closes around a bound insulin molecule	448		Compounds with high phosphoryl-transfer potential can couple carbon oxidation to ATP synthesis	473
	Insulin binding results in the cross-phosphorylation and activation of the insulin receptor	448		Ion gradients across membranes provide an important form of cellular energy that can be coupled to	
	The activated insulin-receptor kinase initiates a kinase cascade	449		ATP synthesis Phosphates play a prominent role in biochemical	474
	Insulin signaling is terminated by the action of phosphatases	451		processes Energy from foodstuffs is extracted in three stages	474 474
14.3	EGF Signaling: Signal-Transduction Pathways Are Poised to Respond	451	15.4	Metabolic Pathways Contain Many	
	EGF binding results in the dimerization of the EGF receptor	451		Recurring Motifs Activated carriers exemplify the modular design	475
	The EGF receptor undergoes phosphorylation of its carboxyl-terminal tail	452		and economy of metabolism Many activated carriers are derived from vitamins	475 478
	EGF signaling leads to the activation of Ras,			Key reactions are reiterated throughout metabolism	480
	a small G protein	453		Metabolic processes are regulated in three principal	
	Activated Ras initiates a protein kinase cascade	453		ways	483
	EGF signaling is terminated by protein phosphatases and the intrinsic GTPase activity of Ras	454		Aspects of metabolism may have evolved from an RNA world	485
14.4	Many Elements Recur with Variation in Different Signal-Transduction Pathways	454		ENDIX	
14.5	Defects in Signal-Transduction Pathways Can Lead to Cancer and Other Diseases	455	Prob	lem-Solving Strategies	487
	Monoclonal antibodies can be used to inhibit signal-	,,,,	СНА	PTER 16	
	transduction pathways activated in tumors Protein kinase inhibitors can be effective	456	Gly	colysis and Gluconeogenesis	491
	anticancer drugs	457		Glucose is generated from dietary carbohydrates	492
	Cholera and whooping cough are the result of altered G-protein activity	457	16.1	Glucose is an important fuel for most organisms Glycolysis Is an Energy-Conversion Pathway	493
4 D.C	IFNDIA			in Many Organisms	493
	PENDIX Chemistry in Focus	459		The enzymes of glycolysis are associated with one another	493
				Glycolysis can be divided into two parts	493
	APTER 15 APTER 15 APTER 15	460		Hexokinase traps glucose in the cell and begins glycolysis	495
		463		Fructose 1,6-bisphosphate is generated from glucose 6-phosphate	496
19.1	Metabolism Is Composed of Many Coupled, Interconnecting Reactions	464		The six-carbon sugar is cleaved into two three-carbon fragments	497
	Metabolism consists of energy-yielding and energy- requiring reactions	464		Mechanism: Triose phosphate isomerase salvages a three-carbon fragment	498
15 2	A thermodynamically unfavorable reaction can be driven by a favorable reaction	465		The oxidation of an aldehyde to an acid powers the formation of a compound with high	
13.2	ATP Is the Universal Currency of Free Energy in Biological Systems	166		phosphoryl-transfer potential Mechanism: Phosphorylation is courted at the	499
	ATP hydrolysis is exergonic ATP hydrolysis drives metabolism by shifting the	466 466		Mechanism: Phosphorylation is coupled to the oxidation of glyceraldehyde 3-phosphate by a thioester intermediate	500
	equilibrium of coupled reactions	468		ATP is formed by phosphoryl transfer from 1,3-bisphosphoglycerate	
	The high phosphoryl potential of ATP results from structural differences between ATP and its			Additional ATP is generated with the formation	501
	hydrolysis products	469		of pyruvate	503

	Two ATP molecules are formed in the conversion of glucose into pyruvate	504	APPENDIX	
	NAD ⁺ is regenerated from the metabolism	504	BIOCHEMISTRY IN FOCUS	532
	of pyruvate	505	Biochemistry In Focus 1	532
	Fermentations provide usable energy in the absence of oxygen	507	Biochemistry in Focus 2	533
	Fructose is converted into glycolytic intermediates by fructokinase	508	APPENDIX Problem-Solving Strategies	533
	Excessive fructose consumption can lead to pathological conditions	508	The state of the s	555
	Galactose is converted into glucose 6-phosphate	509	CHAPTER 17	
	Many adults are intolerant of milk because they are deficient in lactase	510	The Citric Acid Cycle	541
	Galactose is highly toxic if the transferase is missing	511	The citric acid cycle harvests high-energy electrons	542
16.2	The Glycolytic Pathway Is Tightly Controlled Glycolysis in muscle is regulated to meet the need	511	17.1 The Pyruvate Dehydrogenase Complex Links Glycolysis to the Citric Acid Cycle	543
	for ATP The regulation of glycolysis in the liver illustrates	512	Mechanism: The synthesis of acetyl coenzyme A from pyruvate requires three enzymes and five	
	the biochemical versatility of the liver A family of transporters enables glucose to enter	513	coenzymes Flexible linkages allow lipoamide to move between	544
	and leave animal cells	516	different active sites	546
	Aerobic glycolysis is a property of rapidly growing cells	517	17.2 The Citric Acid Cycle Oxidizes Two-Carbon Units	548
	Cancer and endurance training affect glycolysis in a similar fashion	518	Citrate synthase forms citrate from oxaloacetate and acetyl coenzyme A	548
16.3	Glucose Can Be Synthesized from Noncarbohydrate Precursors	519	Mechanism: The mechanism of citrate synthase prevents undesirable reactions	549
	Gluconeogenesis is not a reversal of glycolysis	519	Citrate is isomerized into isocitrate	550
	The conversion of pyruvate into phosphoenolpyruvate begins with the	01)	Isocitrate is oxidized and decarboxylated to alpha-ketoglutarate	551
	formation of oxaloacetate	521	Succinyl coenzyme A is formed by the oxidative decarboxylation of alpha-ketoglutarate	552
	Oxaloacetate is shuttled into the cytoplasm and converted into phosphoenolpyruvate	522	A compound with high phosphoryl-transfer potentia is generated from succinyl coenzyme A	l 552
	The conversion of fructose 1,6-bisphosphate into fructose 6-phosphate and orthophosphate is an	523	Mechanism: Succinyl coenzyme A synthetase transforms types of biochemical energy	553
	irreversible step The generation of free glucose is an important	523	Oxaloacetate is regenerated by the oxidation	
	control point	523	of succinate The citric acid cycle produces high-transfer-potentia	554 I
	Six high-transfer-potential phosphoryl groups are spent in synthesizing glucose from pyruvate	524	electrons, ATP, and CO ₂	555
16.4	Gluconeogenesis and Glycolysis Are	525	17.3 Entry to the Citric Acid Cycle and Metabolism Through It Are Controlled	557
	Reciprocally Regulated Energy charge determines whether glycolysis or		The pyruvate dehydrogenase complex is regulated allosterically and by reversible	
	gluconeogenesis will be most active The balance between glycolysis and gluconeogenesis	525	phosphorylation	557
	in the liver is sensitive to blood-glucose concentration	526	The citric acid cycle is controlled at several points Defects in the citric acid cycle contribute to the	559
	Substrate cycles amplify metabolic signals and	528	development of cancer An enzyme in lipid metabolism is hijacked to inhibit	559
	produce heat Lactate and alanine formed by contracting muscle		pyruvate dehydrogenase activity	560
	are used by other organs Glycolysis and gluconeogenesis are evolutionarily	528	17.4 The Citric Acid Cycle Is a Source of Biosynthetic Precursors	561
	intertwined	530	The citric acid cycle must be capable of being rapidly replenished	561

	The disruption of pyruvate metabolism		18.4	A Proton Gradient Powers the Synthesis of ATP	592
	is the cause of beriberi and poisoning by mercury and arsenic	562		ATP synthase is composed of a proton-conducting unit and a catalytic unit	594
	The citric acid cycle may have evolved from preexisting pathways	563		Proton flow through ATP synthase leads to the release of tightly bound ATP: The binding-change mechanism	595
17.5	The Glyoxylate Cycle Enables Plants and Bacteria to Grow on Acetate	564		Rotational catalysis is the world's smallest molecular motor	597
				Proton flow around the cring powers ATP synthesis	597
	NDIX	ECC		ATP synthase and G proteins have several common features	599
BIOC	CHEMISTRY IN FOCUS	566			
Bioch	nemistry in Focus 1	566	18.5	Many Shuttles Allow Movement Across Mitochondrial Membranes	600
	nemistry in Focus 2	567		Electrons from cytoplasmic NADH enter mitochondria by shuttles	600
	ENDIX lem-Solving Strategies	568		The entry of ADP into mitochondria is coupled	601
				to the exit of ATP by ATP-ADP translocase Mitochondrial transporters for metabolites have a common tripartite structure	602
•	PTER 18				
	dative Phosphorylation	573	18.6	The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP	603
18.1	Eukaryotic Oxidative Phosphorylation Takes Place in Mitochondria	574		The complete oxidation of glucose yields about 30 molecules of ATP	603
	Mitochondria are bounded by a double membrane Mitochondria are the result of an	574		The rate of oxidative phosphorylation is determined by the need for ATP	603
	endosymbiotic event	575		ATP synthase can be regulated	604
18.2	Oxidative Phosphorylation Depends on Electron Transfer	576		Regulated uncoupling leads to the generation of heat	605
	The electron-transfer potential of an electron is measured as redox potential	576		Reintroduction of UCP-1 into pigs may be economically valuable	607
	Electron flow from NADH to molecular oxygen	579		Oxidative phosphorylation can be inhibited at many stages	607
	powers the formation of a proton gradient	3/9		Mitochondrial diseases are being discovered	608
18.3	The Respiratory Chain Consists of Four Complexes: Three Proton Pumps and a	570		Mitochondria play a key role in apoptosis Power transmission by proton gradients is a	609
	Physical Link to the Citric Acid Cycle Iron-sulfur clusters are common components	579		central motif of bioenergetics	609
	of the electron-transport chain	581	APF	PENDIX	
	The high-potential electrons of NADH enter the respiratory chain at NADH-Q oxidoreductase	582	Bio	chemistry in Focus	611
	Ubiquinol is the entry point for electrons from	302	API	PENDIX	
	FADH ₂ of flavoproteins Electrons flow from ubiquinol to cytochrome c	584	Pro	blem-Solving Strategies	612
	through Q-cytochrome c oxidoreductase	584			
	The Q cycle funnels electrons from a two-electron			APTER 19	
	carrier to a one-electron carrier and pumps protons	584	The	e Light Reactions of Photosynthesis	619
	Cytochrome c oxidase catalyzes the reduction of molecular oxygen to water	586		Photosynthesis converts light energy into chemical energy	620
	Most of the electron-transport chain is organized	000	19.1	Photosynthesis Takes Place in Chloroplasts	621
	into a complex called the respirasome Toxic derivatives of molecular oxygen such	589		The primary events of photosynthesis take place in thylakoid membranes	
	as superoxide radicals are scavenged by protective enzymes	590		Chloroplasts arose from an endosymbiotic event	621 622
	Electrons can be transferred between groups that are not in contact	590	19.2	2 Light Absorption by Chlorophyll Induces	
	The conformation of cytochrome c has remained essentially constant for more than a billion years	592		Electron Transfer A special pair of chlorophylls initiate charge	622
		374		separation	623

	Cyclic electron flow reduces the cytochrome of the reaction center	625		Three ATP and two NADPH molecules are used to bring carbon dioxide to the level of a hexose	654
19.3	Two Photosystems Generate a Proton Gradient and NADPH in Oxygenic Photosynthesis	626		Starch and sucrose are the major carbohydrate stores in plants	654
	Photosystem II transfers electrons from water to plastoquinone and generates a proton gradient	626	20.2	The Activity of the Calvin Cycle Depends on Environmental Conditions	655
	Cytochrome bf links photosystem II to photosystem I	629		Rubisco is activated by light-driven changes in	
	Photosystem I uses light energy to generate reduced ferredoxin, a powerful reductant	629		proton and magnesium ion concentrations Thioredoxin plays a key role in regulating the	655
	Ferredoxin–NADP ⁺ reductase converts NADP ⁺ into NADPH	630		Calvin cycle The C ₄ pathway of tropical plants accelerates	655
40.4				photosynthesis by concentrating carbon dioxide	656
19.4	A Proton Gradient across the Thylakoid Membrane Drives ATP Synthesis	631		Crassulacean acid metabolism permits growth in arid ecosystems	659
	The ATP synthase of chloroplasts closely resembles those of mitochondria and prokaryotes	632	20.3	The Pentose Phosphate Pathway Generates	
	The activity of chloroplast ATP synthase is regulated	633		NADPH and Synthesizes Five-Carbon Sugars	659
	Cyclic electron flow through photosystem I leads to the production of ATP instead of NADPH	634		Two molecules of NADPH are generated in the conversion of glucose 6-phosphate into ribulose	
	The absorption of eight photons yields one O_2 , two			5-phosphate	659
19 5	NADPH, and three ATP molecules Accessory Pigments Funnel Energy into	634		The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase	660
15.5	Reaction Centers Resonance energy transfer allows energy to move	635		Mechanism: Transketolase and transaldolase stabilize carbanionic intermediates by different mechanisms	662
	from the site of initial absorbance to the reaction center	636	20.4	The Metabolism of Glucose 6-Phosphate by	
	The components of photosynthesis are highly organized	637		the Pentose Phosphate Pathway Is Coordinated with Glycolysis	665
	Many herbicides inhibit the light reactions of photosynthesis	638		The rate of the oxidative phase of the pentose phosphate pathway is controlled by the level of NADP ⁺	665
	The Ability to Convert Light into Chemical Energy Is Ancient	638		The flow of glucose 6-phosphate depends on the need for NADPH, ribose	
	Artificial photosynthetic systems may provide clean,	620		5-phosphate, and ATP	666
	renewable energy	639		The pentose phosphate pathway is required for rapid cell growth	668
	ENDIX	1200		Through the looking-glass: The Calvin cycle and the pentose phosphate pathway are	
Biod	hemistry in Focus	641		mirror images	668
APP	ENDIX		20.5	Glucose 6-Phosphate Dehydrogenase Plays	
Prob	olem-Solving Strategies	641	20.5	a Key Role in Protection Against Reactive Oxygen Species	668
CHA	PTER 20			Glucose 6-phosphate dehydrogenase deficiency	
				causes a drug-induced hemolytic anemia	669
	Calvin Cycle and the Pentose Phosphate hway	645		A deficiency of glucose 6-phosphate dehydrogenase confers an evolutionary advantage in some circumstances	670
20.1	The Calvin Cycle Synthesizes Hexoses from			Circumstances	0,0
	Carbon Dioxide and Water	646	APF	ENDIX	
	Carbon dioxide reacts with ribulose 1,5-bisphosphate to form two molecules of 3-phosphoglycerate	646		CHEMISTRY IN FOCUS	672
	Rubisco activity depends on magnesium and carbamate	648		chemistry in Focus 1 Chemistry in Focus 2	672 672
	Rubisco activase is essential for rubisco activity	649			
	Rubisco also catalyzes a wasteful oxygenase reaction: Catalytic imperfection	649		PENDIX plem-Solving Strategies	673
	Hexose phosphates are made from phosphoglycerate, and ribulose 1,5-bisphosphate is regenerated	651			

CHA	PTER 21		Α	biochemical understanding of glycogen-storage diseases is possible	700
Glvd	ogen Metabolism	679		diseases is possible	
•	_		APPEN	IDIX	
	Glycogen metabolism is the regulated release and storage of glucose	680	•		702
	Glycogen Breakdown Requires the Interplay of Several Enzymes	681	APPEN Proble		703
	Phosphorylase catalyzes the phosphorolytic cleavage of glycogen to release glucose 1-phosphate	681			
	Mechanism: Pyridoxal phosphate participates in the phosphorolytic cleavage of glycogen	682	CHAP ⁻ Fattv		709
	A debranching enzyme also is needed for the breakdown of glycogen	684	•	Fatty acid degradation and synthesis mirror each other	
	Phosphoglucomutase converts glucose 1-phosphate into glucose 6-phosphate	685		in their chemical reactions	710
	The liver contains glucose 6-phosphatase, a hydrolytic enzyme absent from muscle	685	Ε	riacylglycerols Are Highly Concentrated Energy Stores	710 712
21.2	Phosphorylase Is Regulated by Allosteric Interactions and Reversible Phosphorylation	686		Dietary lipids are digested by pancreatic lipases Dietary lipids are transported in chylomicrons	713
	Liver phosphorylase produces glucose for use by other tissues	686		The Use of Fatty Acids as Fuel Requires Three Stages of Processing	713
	Muscle phosphorylase is regulated by the intracellular energy charge	687		Triacylglycerols are hydrolyzed by hormone- stimulated lipases	713
	Biochemical characteristics of muscle fiber types differ	688		Free fatty acids and glycerol are released into the blood Fatty acids are linked to coenzyme A before they are oxidized	714 715
	Phosphorylation promotes the conversion of phosphorylase <i>b</i> to phosphorylase <i>a</i> Phosphorylase kinase is activated by phosphorylation	688	(Carnitine carries long-chain activated fatty acids into the mitochondrial matrix	716
	and calcium ions An isozymic form of glycogen phosphorylase exists	689	1	Acetyl CoA, NADH, and FADH ₂ are generated in each round of fatty acid oxidation	717
	in the brain	690	,	The complete oxidation of palmitate yields 106 molecules of ATP	718
21.3	Epinephrine and Glucagon Signal the Need for Glycogen Breakdown	690		Unsaturated and Odd-Chain Fatty Acids Require	740
	G proteins transmit the signal for the initiation of glycogen breakdown	690		Additional Steps for Degradation An isomerase and a reductase are required for the	719
	Glycogen breakdown must be rapidly turned off when necessary	692	ı	oxidation of unsaturated fatty acids Odd-chain fatty acids yield propionyl CoA in the	719
	The regulation of glycogen phosphorylase became more sophisticated as the enzyme evolved	692		final thiolysis step Vitamin B ₁₂ contains a corrin ring and a cobalt atom	720 721
21.4	Glycogen Synthesis Requires Several Enzymes an Uridine Diphosphate Glucose	ıd 693		Mechanism: Methylmalonyl CoA mutase catalyzes a rearrangement to form succinyl CoA	721
	UDP-glucose is an activated form of glucose	693		Fatty acids are also oxidized in peroxisomes	723
	Glycogen synthase catalyzes the transfer of glucose from UDP-glucose to a growing chain	693		Some fatty acids may contribute to the development of pathological conditions	724
	A branching enzyme forms α -1,6 linkages	694	22.4	Ketone Bodies Are a Fuel Source Derived	
	Glycogen synthase is the key regulatory enzyme in glycogen synthesis	695		from Fats Ketone bodies are a major fuel in some tissues	724 725
	Glycogen is an efficient storage form of glucose	695		Animals cannot convert fatty acids into glucose	727
21.5	Glycogen Breakdown and Synthesis Are Reciprocally Regulated	696	22.5	Fatty Acids Are Synthesized by Fatty Acid Synthase	
	Protein phosphatase 1 reverses the regulatory effects of kinases on glycogen metabolism	696		Fatty acids are synthesized and degraded by different pathways	728 728
	Insulin stimulates glycogen synthesis by inactivating glycogen synthase kinase	698		The formation of malonyl CoA is the committed step in fatty acid synthesis	729
	Glycogen metabolism in the liver regulates the blood-glucose concentration	698		Intermediates in fatty acid synthesis are attached to an acyl carrier protein	729

	Fatty acid synthesis consists of a series of condensation	,	N	Mechanism: Pyridoxal phosphate forms Schiff-base	
	reduction, dehydration, and reduction reactions	729		intermediates in aminotransferases	759
	Fatty acids are synthesized by a multifunctional enzyme complex in animals	731	Α	Aspartate aminotransferase is an archetypal pyridoxal-dependent transaminase	761
	The synthesis of palmitate requires 8 molecules of acetyl CoA, 14 molecules of NADPH, and 7 molecules of ATP	7 22		Blood levels of aminotransferases serve a diagnostic function	761
	Citrate carries acetyl groups from mitochondria	733	P	yridoxal phosphate enzymes catalyze a wide array of reactions	762
	to the cytoplasm for fatty acid synthesis Several sources supply NADPH for fatty acid	733		erine and threonine can be directly deaminated Peripheral tissues transport nitrogen to the liver	763 763
	synthesis	734		• •	703
	Fatty acid metabolism is altered in tumor cells Triacylglycerols may become an important	735		Ammonium Ion Is Converted into Urea in Most Ferrestrial Vertebrates	764
	renewal energy source	735	Τ	The urea cycle begins with the formation of carbamoyl phosphate	764
22.6	The Elongation and Unsaturation of Fatty Acids Are Accomplished by Accessory		C	Carbamoyl phosphate synthetase is the key regulatory enzyme for urea synthesis	764
	Enzyme Systems	736	C	Carbamoyl phosphate reacts with ornithine	704
	Membrane-bound enzymes generate unsaturated fatty acids	736	7	to begin the urea cycle	765
	Eicosanoid hormones are derived from polyunsaturated fatty acids	737		The urea cycle is linked to gluconeogenesis Jrea-cycle enzymes are evolutionarily related to enzymes in other metabolic pathways	766 767
	Variations on a theme: Polyketide and nonribosomal peptide synthetases resemble fatty acid synthase	738	I	nherited defects of the urea cycle cause hyperammonemia and can lead to brain damage	767
22.7	Acetyl CoA Carboxylase Plays a Key Role		ι	Jrea is not the only means of disposing of	
	in Controlling Fatty Acid Metabolism	739		excess nitrogen	768
	Acetyl CoA carboxylase is regulated by conditions in the cell	739	E	Carbon Atoms of Degraded Amino Acids imerge as Major Metabolic Intermediates	769
	Acetyl CoA carboxylase is regulated by a variety of hormones	740		yruvate is an entry point into metabolism for a number of amino acids	770
	AMP-activated protein kinase is a key regulator of metabolism	740		Oxaloacetate is an entry point into metabolism for aspartate and asparagine	770
APP	ENDIX		Ā	Alpha-ketoglutarate is an entry point into metabolism for five-carbon amino acids	770
	hemistry in Focus	743	S	succinyl coenzyme A is a point of entry for several amino acids	771
	ENDIX		N	Methionine degradation requires the	
Prob	lem-Solving Strategies	744		formation of a key methyl donor, S-adenosylmethionine	772
СНА	PTER 23		7	Threonine deaminase initiates the degradation of threonine	772
Pro	tein Turnover and Amino Acid Catabolism	751	3	The branched-chain amino acids yield acetyl CoA, acetoacetate, or propionyl CoA	772
23.1	Proteins Are Degraded to Amino Acids	752	(Oxygenases are required for the degradation of aromatic amino acids	773
	The digestion of dietary proteins begins in the stomach and is completed in the intestine Cellular proteins are degraded at different rates	752 753	F	Protein metabolism helps to power the flight of migratory birds	775
23.2	Protein Turnover Is Tightly Regulated	7 53 754		nborn Errors of Metabolism Can Disrupt Amino Acid Degradation	776
	Ubiquitin tags proteins for destruction The proteasome digests the ubiquitin-tagged proteins	755		Phenylketonuria is one of the most common	
	The ubiquitin pathway and the proteasome have prokaryotic counterparts	756	I	metabolic disorders Determining the basis of the neurological symptoms	777
	Protein degradation can be used to regulate biological function	757	A DDF	of phenylketonuria is an active area of research	777
23.3	The First Step in Amino Acid Degradation Is the	758	APPEi Bioch	NDIX emistry in Focus	779
	Removal of Nitrogen Alpha-amino groups are converted into ammonium	יטכי,	APPE	NDIX	
	ions by the oxidative deamination of glutamate	758	Proble	em-Solving Strategies	780

CHAI	PTER 24		APPE	NDIX	
_	Biosynthesis of Amino Acids	787		lemistry in Focus	815
	Amino acid synthesis requires solutions to three key biochemical problems	788		NDIX em-Solving Strategies	816
24.1	Nitrogen Fixation: Microorganisms Use ATP and a Powerful Reductant to Reduce Atmospheric Nitrogen to Ammonia	788		PTER 25 leotide Biosynthesis	821
	The iron-molybdenum cofactor of nitrogenase binds and reduces atmospheric nitrogen Ammonium ion is assimilated into an amino acid	790		Nucleotides can be synthesized by de novo or salvage pathways	822
24.2	through glutamate and glutamine Amino Acids Are Made from Intermediates	791	25.1	The Pyrimidine Ring Is Assembled de Novo or Recovered by Salvage Pathways	822
2~	of the Citric Acid Cycle and Other Major Pathways	793		Bicarbonate and other oxygenated carbon compounds are activated by phosphorylation	823
	Human beings can synthesize some amino acids but must obtain others from their diet	793		The side chain of glutamine can be hydrolyzed to generate ammonia	823
	Aspartate, alanine, and glutamate are formed by the addition of an amino group to an alpha-ketoacid	794		Intermediates can move between active sites by channeling Orotate acquires a ribose ring from PRPP	824
	A common step determines the chirality of all amino acids	795		to form a pyrimidine nucleotide and is converted into uridylate	824
	The formation of asparagine from aspartate requires an adenylated intermediate	796		Nucleotide mono-, di-, and triphosphates are interconvertible	825
	Glutamate is the precursor of glutamine, proline, and arginine 3-Phosphoglycerate is the precursor of serine,	796		CTP is formed by amination of UTP Salvage pathways recycle pyrimidine bases	825 826
	cysteine, and glycine Tetrahydrofolate carries activated one-carbon units	797	25.2	Purine Bases Can Be Synthesized de Novo or Recycled by Salvage Pathways	826
	at several oxidation levels S-Adenosylmethionine is the major donor of	798		The purine ring system is assembled on ribose phosphate	827
	methyl groups Cysteine is synthesized from serine and homocysteine	799 801		The purine ring is assembled by successive steps of activation by phosphorylation followed by displacement	827
	High homocysteine levels correlate with vascular disease	801		AMP and GMP are formed from IMP Enzymes of the purine synthesis pathway associate	829
	Shikimate and chorismate are intermediates in the biosynthesis of aromatic amino acids	801		with one another in vivo Salvage pathways economize intracellular energy	830
	Tryptophan synthase illustrates substrate channeling in enzymatic catalysis	804	25.3	expenditure Deoxyribonucleotides Are Synthesized by the	830
24.3	Feedback Inhibition Regulates Amino Acid Biosynthesis	805		Reduction of Ribonucleotides Through a Radical Mechanism	831
	Branched pathways require sophisticated regulation The sensitivity of glutamine synthetase to allosteric	805		Mechanism: A tyrosyl radical is critical to the action of ribonucleotide reductase	831
24.4	regulation is altered by covalent modification Amino Acids Are Precursors of Many	807		Stable radicals other than tyrosyl radical are employed by other ribonucleotide reductases	833
	Biomolecules Glutathione, a gamma-glutamyl peptide, serves	808		Thymidylate is formed by the methylation of deoxyuridylate Dihydrofolate reductase catalyzes the regeneration	834
	as a sulfhydryl buffer and an antioxidant Nitric oxide, a short-lived signal molecule, is formed from argining			of tetrahydrofolate, a one-carbon carrier Several valuable anticancer drugs block the synthesis	835
	from arginine Amino acids are precursors for a number of neurotransmitters	809	25 A	of thymidylate	835
	Porphyrins are synthesized from glycine and succinyl coenzyme A	810 810	23.4	Key Steps in Nucleotide Biosynthesis Are Regulated by Feedback Inhibition Pyrimidine biosynthesis is regulated by aspartate	836
	Porphyrins accumulate in some inherited disorders of porphyrin metabolism	814		transcarbamoylase	836

	The synthesis of purine nucleotides is controlled by feedback inhibition at several sites	837	26.3	The Complex Regulation of Cholesterol Biosynthesis Takes Place at Several Levels	861
	The synthesis of deoxyribonucleotides is controlled by the regulation of ribonucleotide reductase	837		Lipoproteins transport cholesterol and triacylglycerols throughout the organism	863
25.5	Disruptions in Nucleotide Metabolism	020		Low-density lipoproteins play a central role in cholesterol metabolism	866
	Can Cause Pathological Conditions The loss of adenosine deaminase activity results	838		The absence of the LDL receptor leads to hypercholesterolemia and atherosclerosis	867
	in severe combined immunodeficiency	839		Mutations in the LDL receptor prevent LDL	007
	Gout is induced by high serum levels of urate Lesch-Nyhan syndrome is a dramatic consequence	839		release and result in receptor destruction	868
	of mutations in a salvage-pathway enzyme	840		Inability to transport cholesterol from the lysosome causes Niemann-Pick disease	869
	Folic acid deficiency promotes birth defects such as spina bifida	841		Cycling of the LDL receptor is regulated	869
		3,1		HDL appears to protect against atherosclerosis	870
APP	ENDIX			The clinical management of cholesterol levels	
Bioc	hemistry in Focus	842		can be understood at a biochemical level	870
	ENDIX		26.4	Important Biochemicals Are Synthesized from Cholesterol and Isoprene	871
Prob	lem-Solving Strategies	843		Letters identify the steroid rings and numbers identify the carbon atoms	872
	PTER 26			Steroids are hydroxylated by cytochrome P450 monooxygenases that use NADPH and O ₂	873
The Ster	Biosynthesis of Membrane Lipids and pids	849		The cytochrome P450 system is widespread and performs a protective function	874
26.1	Phosphatidate Is a Common Intermediate in the Synthesis of Phospholipids and Triacylglycerols	850		Pregnenolone, a precursor of many other steroids, is formed from cholesterol by cleavage of its side chain	875
	The synthesis of phospholipids requires an activated intermediate	851		Progesterone and corticosteroids are synthesized from pregnenolone	875
	Some phospholipids are synthesized from an activated alcohol	852		Androgens and estrogens are synthesized from pregnenolone	875
	Phosphatidylcholine is an abundant phospholipid Excess choline is implicated in the development	853		Vitamin D is derived from cholesterol by the ring-splitting activity of light	877
	of heart disease Base-exchange reactions can generate	853		Five-carbon units are joined to form a wide variety of biomolecules	878
	phospholipids	853 854		Some isoprenoids have industrial applications	880
	Sphingolipids are synthesized from ceramide Gangliosides are carbohydrate-rich sphingolipids	037	ΔΡΡ	ENDIX	
	that contain acidic sugars	855		chemistry in Focus	882
	Sphingolipids confer diversity on lipid structure and function	856		ENDIX	002
	Respiratory distress syndrome and Tay Sachs disease result from the disruption		Prol	olem-Solving Strategies	882
	of lipid metabolism	856			
	Ceramide metabolism stimulates tumor growth	857	CHA	APTER 27	
	Phosphatidic acid phosphatase is a key regulatory enzyme in lipid metabolism	857	The	Integration of Metabolism	889
26.2	Cholesterol Is Synthesized from	050	27.1	Caloric Homeostasis Is a Means of Regulating Body Weight	890
	Acetyl Coenzyme A in Three Stages	858	77 2	The Prain Plays a Key Pole in Colorie	
	The synthesis of mevalonate, which is activated as isopentenyl pyrophosphate,	858	21.2	The Brain Plays a Key Role in Caloric Homeostasis	892
	initiates the synthesis of cholesterol Squalene (C_{30}) is synthesized from six molecules	859		Signals from the gastrointestinal tract induce feelings of satiety	892
	of isopentenyl pyrophosphate (C ₅) Squalene cyclizes to form cholesterol	860		Leptin and insulin regulate long-term control over caloric homeostasis	893
				Leptin is one of several hormones secreted by adipose tissue	894

	Leptin resistance may be a contributing factor to obesity Dieting is used to combat obesity	895 896		Screening libraries of synthetic compounds expands the opportunity for identification of drug leads Drugs can be designed on the basis of three-dimension structural information about their targets	933 nal 935
27.3	Diabetes Is a Common Metabolic Disease		202	Genomic Analyses Can Aid Drug Discovery	937
	Often Resulting from Obesity Insulin initiates a complex signal-transduction	896 897	20.3	Potential targets can be identified in the human proteome	937
	pathway in muscle Metabolic syndrome often precedes type 2 diabetes	898 899		Animal models can be developed to test the validity of potential drug targets	938
	Excess fatty acids in muscle modify metabolism Insulin resistance in muscle facilitates pancreatic failure	899		Potential targets can be identified in the genomes of pathogens	939
	Metabolic derangements in type 1 diabetes result from insulin insufficiency and glucagon excess	901		Genetic differences influence individual responses to drugs	939
27.4	Exercise Beneficially Alters the Biochemistry of Cells Mitochondrial biogenesis is stimulated by	901	28.4	The Clinical Development of Drugs Proceeds Through Several Phases Clinical trials are time-consuming and expensive The evolution of drug resistance can limit the utility	940 941
	muscular activity Fuel choice during exercise is determined by the intensity and duration of activity	902 902		of drugs for infectious agents and cancer	942
27.5	Food Intake and Starvation Induce Metabolic		APP	ENDIX	
27.5	Changes The starved -fed cycle is the physiological response	905	Bioc	hemistry in Focus	945
	to a fast	905	СНА	PTER 29	
	Metabolic adaptations in prolonged starvation minimize protein degradation	907	DN	A Replication, Repair, and Recombination	949
27.6	Ethanol Alters Energy Metabolism in the Liver Ethanol metabolism leads to an excess of NADH	909 910	29.1	DNA Replication Proceeds by the Polymerization of Deoxyribonucleoside Triphosphates	
	Excess ethanol consumption disrupts vitamin metabolism	911		Along a Template DNA polymerases require a template and a primer	951 951
APP	ENDIX			All DNA polymerases have structural features in common	951
BIO	CHEMISTRY IN FOCUS	914		Two bound metal ions participate in the polymerase	0.52
Biod	hemistry in Focus 1	914		reaction The specificity of replication is dictated	952
	hemistry in Focus 2	915		by complementarity of shape between bases An RNA primer synthesized by primase enables	952
	ENDIX plem-Solving Strategies	916		DNA synthesis to begin	953
	vein salving strategies	916		One strand of DNA is made continuously, whereas the other strand is synthesized in fragments	953
	APTER 28			DNA ligase joins ends of DNA in duplex regions The separation of DNA strands requires specific	954
Dru	g Development	921		helicases and ATP hydrolysis	955
28.1	Compounds Must Meet Stringent Criteria to Be Developed into Drugs	923	29.2	DNA Unwinding and Supercoiling Are Controlled by Topoisomerases	956
	Drugs must be potent and selective Drugs must have suitable properties to reach	923		The linking number of DNA, a topological property, determines the degree of supercoiling	956
	their targets Toxicity can limit drug effectiveness	924		Topoisomerases prepare the double helix for unwinding	958
28.7		929		Type I topoisomerases relax supercoiled structures	959
20.2	Drug Candidates Can Be Discovered by Serendipity, Screening, or Design Screndipitous observations can drive	930		Type II topoisomerases can introduce negative supercoils through coupling to ATP hydrolysis	960
	drug development Natural products are a valuable source of drugs	930	29.3	DNA Replication Is Highly Coordinated DNA replication requires highly processive	961
	and drug leads	932		polymerases	962

	The leading and lagging strands are synthesized in a coordinated fashion	962		Some messenger RNAs directly sense metabolite concentrations	992
	DNA replication in Escherichia coli begins at a unique site and proceeds through initiation,			The <i>rho</i> protein helps to terminate the transcription of some genes	992
	elongation, and termination	964		Some antibiotics inhibit transcription	994
	DNA synthesis in eukaryotes is initiated at multiple sites Telomeres are unique structures at the ends of	965		Precursors of transfer and ribosomal RNA are cleaved and chemically modified after transcription in prokaryotes	n 995
	linear chromosomes	967			
	Telomeres are replicated by telomerase, a specialized polymerase that carries its own	0.40	30.2	Transcription in Eukaryotes Is Highly Regulated Three types of RNA polymerase synthesize RNA in eukaryotic cells	996 997
	RNA template	968		Three common elements can be found in the RNA	771
	Many Types of DNA Damage Can Be Repaired	968		polymerase II promoter region	998
	Errors can arise in DNA replication	969		The TFIID protein complex initiates the assembly	
	Bases can be damaged by oxidizing agents, alkylating agents, and light	969		of the active transcription complex Multiple transcription factors interact with eukaryotic	
	DNA damage can be detected and repaired	070		promoters	1000
	by a variety of systems The presence of thymine instead of uracil in	970 972		Enhancer sequences can stimulate transcription at start sites thousands of bases away	1001
	DNA permits the repair of deaminated cytosine Some genetic diseases are caused by the expansion	972	30.3	The Transcription Products of Eukaryotic	
	of repeats of three nucleotides	973		Polymerases Are Processed	1001
	Many cancers are caused by the defective repair			RNA polymerase I produces three ribosomal RNAs	1001
	of DNA	973		RNA polymerase III produces transfer RNA	1002
	Many potential carcinogens can be detected by their mutagenic action on bacteria	975		The product of RNA polymerase II, the pre-mRNA transcript, acquires a 5' cap and a 3' poly(A) tail	1002
29.5	DNA Recombination Plays Important Roles in Replication, Repair, and Other Processes	975		Small regulatory RNAs are cleaved from larger precursors	1004
	RecA can initiate recombination by promoting strand invasion	976		RNA editing changes the proteins encoded by mRNA	1004
	Some recombination reactions proceed through Holliday-junction intermediates	976		Sequences at the ends of introns specify splice sites in mRNA precursors	1005
4 D D I	CNDIV			Splicing consists of two sequential transesterification	1006
	ENDIX	980		reactions Small nuclear RNAs in spliceosomes catalyze the	1006
RIOCI	hemistry in Focus	980		splicing of mRNA precursors Transcription and processing of mRNA are coupled	1007 1010
CHA	PTER 30			Mutations that affect pre-mRNA splicing cause	1010
RNA	Synthesis and Processing	983		disease Most human pre-mRNAs can be spliced in	1010
	RNA synthesis comprises three stages: Initiation, elongation, and termination	984		alternative ways to yield different proteins	1011
	RNA Polymerases Catalyze Transcription	985	30.4	The Discovery of Catalytic RNA Was Revealing in Regard to Both Mechanism and Evolution	1012
	RNA chains are formed de novo and grow in the 5'-to-3' direction	986	APP	ENDIX	
	RNA polymerases backtrack and correct errors	988	Biod	chemistry in Focus	1017
	RNA polymerase binds to promoter sites on the DNA template to initiate transcription	988			
	Sigma subunits of RNA polymerase recognize	989	CHA	APTER 31	
	promoter sites RNA polymerases must unwind the template double	,,,	Pro	tein Synthesis	1021
	helix for transcription to take place Elongation takes place at transcription bubbles that	990	31.1	Protein Synthesis Requires the Translation	
	move along the DNA template Sequences within the newly transcribed RNA signal	991		of Nucleotide Sequences into Amino Acid Sequences	1022
	termination	991		The synthesis of long proteins requires a low error frequency	1022

	and a part of the last of common design	1023	APPENDIX	
	Transfer RNA molecules have a common design Some transfer RNA molecules recognize more than one codon because of wobble in base-pairing	1025	Problem-Solving Strategies	1051
31 2	Aminoacyl Transfer RNA Synthetases Read the		CHAPTER 32	
J 1.2	Genetic Code	1026	The Control of Gene Expression	
	Amino acids are first activated by adenylation	1027	in Prokaryotes	1057
	Aminoacyl-tRNA synthetases have highly discriminating amino acid activation sites	1028	32.1 Many DNA-Binding Proteins Recognize	4050
	Proofreading by aminoacyl-tRNA synthetases	1029	Specific DNA Sequences	1058
	increases the fidelity of protein synthesis Synthetases recognize various features of transfer RNA molecules	1029	The helix-turn-helix motif is common to many prokaryotic DNA-binding proteins	1059
	Aminoacyl-tRNA synthetases can be divided into two classes	1030	32.2 Prokaryotic DNA-Binding Proteins Bind Specifically to Regulatory Sites in Operons	1060
31.3	The Ribosome is the site of the term by harren	1031	An operon consists of regulatory elements and protein-encoding genes	1061
	Ribosomal RNAs (5S, 16S, and 23S rRNA) play a central role in protein synthesis	1031	The <i>lac</i> repressor protein in the absence of lactose binds to the operator and blocks transcription	1061
	Ribosomes have three tRNA-binding sites that bridge the 30S and 50S subunits	1032	Ligand binding can induce structural changes in regulatory proteins	1062
	The start signal is usually AUG preceded by several bases that pair with 16S rRNA	1034	The operon is a common regulatory unit in prokaryotes	1063
	Bacterial protein synthesis is initiated by formylmethionyl transfer RNA	1035	Transcription can be stimulated by proteins that contact RNA polymerase	1064
	Formylmethionyl-tRNA _f is placed in the P site of the ribosome in the formation of the 70S initiation complex	1035	32.3 Regulatory Circuits Can Result in Switching Between Patterns of Gene Expression	1065
	Elongation factors deliver aminoacyl-tRNA		The λ repressor regulates its own expression	1065
	to the ribosome	1036	A circuit based on the λ repressor and Cro forms	
	Peptidyl transferase catalyzes peptide-bond synthesis	1037	a genetic switch	1066
	The formation of a peptide bond is followed by the	1037	Many prokaryotic cells release chemical signals	1066
	GTP-driven translocation of tRNAs and mRNA	1038	that regulate gene expression in other cells Biofilms are complex communities of prokaryotes	1066 1067
	Protein synthesis is terminated by release factors			1007
31 4	that read stop codons Eukaryotic Protein Synthesis Differs from	1040	32.4 Gene Expression Can Be Controlled at Posttranscriptional Levels	1068
51.7	Bacterial Protein Synthesis Primarily in Translation Initiation	1041	Attenuation is a prokaryotic mechanism for regulating transcription through the modulation of nascent RNA secondary structure	1068
	Mutations in initiation factor 2 cause a curious		or hascent retark secondary structure	1000
	pathological condition	1042	APPENDIX	
31.5	A Variety of Antibiotics and Toxins Can		Biochemistry in Focus	1072
	Inhibit Protein Synthesis	1043	1 S. Sell (1997) 19 - 1997 (1997)	
	Some antibiotics inhibit protein synthesis	1043	CHAPTER 33	
	Diphtheria toxin blocks protein synthesis in eukaryotes by inhibiting translocation	1044	V 9	4075
	Some toxins modifiy 28S ribosomal RNA	1044 1045	The Control of Gene Expression in Eukaryotes	1075
24.0			33.1 Eukaryotic DNA Is Organized into Chromatin	107
31.6	Ribosomes Bound to the Endoplasmic Reticulum Manufacture Secretory and Membrane Proteins	1015	Nucleosomes are complexes of DNA and histones	107
	Protein synthesis begins on ribosomes that are free in the cytoplasm		DNA wraps around histone octamers to form nucleosomes	107
	Signal sequences mark proteins for translocation	1046	33.2 Transcription Factors Big J Davis	107
	across the endoplasmic reticulum membrane	1046	33.2 Transcription Factors Bind DNA and Regulate Transcription Initiation	107
	Transport vesicles carry cargo proteins to their final destination	1048	A range of DNA-binding structures are employed by eukaryotic DNA-binding proteins	108
API	PENDIX		Activation domains interact with other proteins	108
	chemistry in Focus	1051	Multiple transcription factors interact with eukaryotic regulatory regions	108

	Enhancers can stimulate transcription in specific cell types	1082		Light absorption induces a specific isomerization of bound 11-cis-retinal	1108
	Induced pluripotent stem cells can be generated by introducing four transcription factors			Light-induced lowering of the calcium level coordinates recovery	1109
	into differentiated cells	1082		Color vision is mediated by three cone receptors that are homologs of rhodopsin	1110
33.3	The Control of Gene Expression Can Require Chromatin Remodeling	1083		Rearrangements in the genes for the green and red pigments lead to "color blindness"	1111
	The methylation of DNA can alter patterns of gene expression	1084	34.4	Hearing Depends on the Speedy Detection	1111
	Steroids and related hydrophobic molecules pass through membranes and bind			of Mechanical Stimuli Hair cells use a connected bundle of stereocilia	1111
	to DNA-binding receptors Nuclear hormone receptors regulate transcription	1084		to detect tiny motions	1112
	by recruiting coactivators to the transcription complex	1085		Mechanosensory channels have been identified in <i>Drosophila</i> and vertebrates	1113
	Steroid-hormone receptors are targets for drugs	1086	34.5	Touch Includes the Sensing of Pressure, Temperature, and Other Factors	1113
	Chromatin structure is modulated through covalent modifications of histone tails	1087		Studies of capsaicin reveal a receptor for sensing	1113
	Transcriptional repression can be achieved through histone deacetylation and other modifications	1089		high temperatures and other painful stimuli	1114
33.4	Eukaryotic Gene Expression Can Be Controlled			ENDIX hemistry in Focus	1116
	at Posttranscriptional Levels Genes associated with iron metabolism are	1090	DIUC	mennstry in rocus	1110
	translationally regulated in animals	1090	•	CHAPTER 35	
	Small RNAs regulate the expression of many eukaryotic genes	1092	The	Immune System	1119
APP	ENDIX			Innate immunity is an evolutionarily ancient defense system	1120
Biod	hemistry in Focus	1094		The adaptive immune system responds by using the principles of evolution	1122
•	CHAPTER 34		35.1	Antibodies Possess Distinct Antigen- Binding and Effector Units	1124
Sen	sory Systems	1097	35.2	Antibodies Bind Specific Molecules Through	
34.1	A Wide Variety of Organic Compounds Are Detected by Olfaction	1098		Hypervariable Loops The immunoglobulin fold consists of a beta-sandwice	
	Olfaction is mediated by an enormous family of seven-transmembrane-helix receptors	1099		framework with hypervariable loops X-ray analyses have revealed how antibodies bind antigens	1127 1127
	Odorants are decoded by a combinatorial mechanism	1101		Large antigens bind antibodies with numerous interactions	1128
34.2	Taste Is a Combination of Senses That Function by Different Mechanisms	1102	35.3	Diversity Is Generated by Gene	•
	Sequencing of the human genome led to the	, , , ,		Rearrangements	1129
	discovery of a large family of 7TM bitter receptors	1103		J (joining) genes and D (diversity) genes increase antibody diversity	1130
	A heterodimeric 7TM receptor responds to sweet compounds	1105		More than 10 ⁸ antibodies can be formed by combinatorial association and somatic mutation	1131
	Umami, the taste of glutamate and aspartate, is mediated by a heterodimeric receptor related	1105		The oligomerization of antibodies expressed on the surfaces of immature B cells triggers antibody secretion	1132
	to the sweet receptor Salty tastes are detected primarily by the passage	1103		Different classes of antibodies are formed by the	
	of sodium ions through channels	1105	25.4	hopping of V _H genes	1133
	Sour tastes arise from the effects of hydrogen ions (acids) on channels	1106	35.4	Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors	1134
34.3	Photoreceptor Molecules in the Eye Detect Visible Light	1106		Peptides presented by MHC proteins occupy a deep groove flanked by alpha helices	1134
	Rhodopsin, a specialized 7TM receptor, absorbs visible light	1107	8 at	apters online only	1103

	T-cell receptors are antibody-like proteins containing variable and constant regions	1136	36.2 Myosins Move Along Actin Filaments Actin is a polar, self-assembling, dynamic polymer	115 115
	CD8 on cytotoxic T cells acts in concert with T-cell receptors	1137	Myosin head domains bind to actin filaments Motions of single motor proteins can be directly	115
	Helper T cells stimulate cells that display foreign peptides bound to class II MHC proteins	1139	observed Phosphate release triggers the myosin power stroke	115 115
	Helper T cells rely on the T-cell receptor and CD4 to recognize foreign peptides on antigen- presenting cells	1139	Muscle is a complex of myosin and actin The length of the lever arm determines motor velocit	116 y 116
	MHC proteins are highly diverse	1141	36.3 Kinesin and Dynein Move Along Microtubules	116
	Human immunodeficiency viruses subvert the immune system by destroying helper T cells	1141	Microtubules are hollow cylindrical polymers Kinesin motion is highly processive	116 116
35.5	The Immune System Contributes to the Prevention and the Development	44.40	36.4 A Rotary Motor Drives Bacterial Motion Bacteria swim by rotating their flagella	116 116
	of Human Diseases	1142	Proton flow drives bacterial flagellar rotation	116
	T cells are subjected to positive and negative selection in the thymus	1142	Bacterial chemotaxis depends on reversal of the direction of flagellar rotation	116
	Autoimmune diseases result from the generation of immune responses against self-antigens	1143	APPENDIX	
	The immune system plays a role in cancer prevention	1144	Biochemistry in Focus	1171
	Vaccines are a powerful means to prevent and eradicate disease	1144	Answers to Problems	A
APP	ENDIX		Class (Declare)	В
Biod	themistry in Focus	1147	Selected Readings	
	•	1147	Index	С
	CHAPTER 36			
Мо	lecular Motors	1151		
36.1	Most Molecular-Motor Proteins Are Members of the P-Loop NTPase Superfamily	1152		
	Molecular motors are generally oligomeric proteins with an ATPase core and an extended structure	1153		
	ATP binding and hydrolysis induce changes in the conformation and binding affinity of motor proteins	1155		

1155

• Chapters online only