Contents

Preface	v
Introduction	ix
1. Representing Formal Systems in Logical Frameworks	1
Metalogical Frameworks	
David A. Basin and Robert L. Constable	1
Encoding of data types in Pure Construction Calculus:	
a semantic justification	
Stefano Berardi	30
Experience with FS_0 as a Framework Theory	
Sean Matthews, Alan Smaill and David Basin	61
Logical Support for Modularisation	
Răzvan Diaconescu, Joseph Goguen and Petros Stefaneas	83
2. Algorithms for Logical Environments	131
Algorithmic definition of lambda-typed lambda calculus	
N. G. de Bruijn	131
A Canonical Calculus of Residuals	
Yves Bertot	146
Order-Sorted Polymorphism in Isabelle	
Tobias Nipkow	164
3. Logical Issues	189
An Interpretation of Kleene's Slash in Type Theory	
Jan Smith	189
Inductive Data Types: Well-orderings Revisited	
Healfdene Goguen and Zhaohui Luo	198
Witness Extraction in Classical Logic through Normalization	
Franco Barbanera and Stefano Berardi	219
Finding the Answers in Classical Proofs:	
A Unifying Framework	
Chetan R. Murthy	247
Church-Rosser Property in Classical Free Deduction	
Michel Pariant	273

viii Contents

4. Experiments	297
Completing the Rationals and Metric Spaces in LEGO	297
Claire Jones	
A Machine Checked Proof that Ackermann's Function	
is not Primitive Recursive	
Nora Szasz	317