Contents

Editor's Note xv Foreword xvii

1 Introduction to Nanotechnology 1 by Dr. K. Eric Drexler

1.1	The relationship of molecular nanotechnology and science	1
1.2	The essential role of manufacturing in technological progress 2	
1.3	Early ideas and recent progress 3	
1.4	Implications of atomic-scale positional control for manufacturing 5	
1.5	Uses of the term "nanotechnology" 6	
1.6	An overview of the study of molecular nanotechnology	8
1.7	The importance of molecular manufacturing 9	
1.8	Molecular machine components 10	
1.9	A molecular manufacturing system 12	
1.10	A "household" molecular manufacturing system 13	
1.11	Summary: Characteristics of molecular manufacturing 1	6
1.12	Molecular manufacturing and the computer revolution 1	7

2

3

1.13	From current technology to molecular manufacturing 17
1.14	Public policy and molecular manufacturing 18
1.15	Conclusions 18
1.16	Discussion 19
•	gn-Ahead for Nanotechnology 23 lph C. Merkle
2.1	Diamond 24
2.2	Designing small mechanical structures from diamondoid materials 25
2.3	Simulating the properties of molecular structures 27
2.4	Designing a nanoscale robot arm 31
2.5	Chemical tools to synthesize diamondoid materials 32
2.6	A synthetic strategy 34
2.7	Self-replicating systems 35
2.8	Starting with simpler systems 36
2.9	Complexity of different kinds of self-replicating systems 36
2.10	Reactions to molecular manufacturing 37
2.11	Advances in computer technology 39
2.12	Fundamental physical limits of computation 40
2.13	A molecular mechanical computer 40
2.14	Performance characteristics of a molecular mechanical computer 43
2.15	Advantages and disadvantages of molecular mechanical logic 44
2.16	Research objectives for molecular manufacturing 46
2.17	Discussion 48
	igning Molecular Components 53 ed Kaehler
3.1	Paths to a proto-assembler 53
3.2	Artificial evolution 54
3.3	Key steps in artificial evolution 57
3.4	Applications of artificial evolution 60
3.5	Molecular building blocks 61

Contents ix

Requirements for molecular building blocks

3.6

6.1

	3.7	Problems in finding molecular building blocks 62
	3.8	Summary 65
	3.9	Discussion 65
4		echnology as an Enabling Technology 67 r. Martin Edelstein
	4.1	Information management in the cell 67
	4.2	Structural proteins provide the physical-plant of the cell 68
	4.3	Molecular manufacturing within the cell 70
	4.4	Inventory control in the cell 71
	4.5	Current technology for producing proteins 72
	4.6	Protein structures begin with linear chains of amino acids 73
	4.7	Protein chains fold into more complex structures 74
	4.8	Secondary structure in proteins 76
	4.9	Structural motifs in proteins 79
	4.10	Lessons for molecular nanotechnology from the study of protein structural motifs 85
	4.11	Practical considerations for biological production of proteins 86
	4.12	Discussion 88
5		eling and Remodeling Molecules 93 ichael Pique
	5.1	An overview of protein molecules 94
	5.2	Remodeling an antibody molecule 97
	5.3	Remodeling an enzyme 102
	5.4	New ways to model proteins 106
	5.5	Conclusions 108
	5.6	Acknowledgments 108
	5.7	Discussion 109
6		s to Nanotechnology 113 oward Landman

A model for scientific and economic development

113

7

8

9

by Christine L. Peterson

Contents xi

	9.1	Components of the concept 173
		9.1.1 Atoms 174
		9.1.2 Chemistry 174
		9.1.3 Molecular machinery: Atoms as parts of machines 175
		9.1.4 Programmable manufacturing systems 176
	9.2	A partial synthesis by Feynman 176
	9.3	Methodology required: Theoretical applied science 178
	9.4	Nanotechnology concept emerges at MIT 178
	9.5	Theoretical work continues 180
	9.6	Further work 182
		9.6.1 Work in the United States 182
		9.6.2 Work in Switzerland and Sweden 184
		9.6.3 Work in Japan 184
	9.7	Public education and policy implications 184
	9.8	Interest within the space development community 186
	9.9	Prospects for nanotechnology 186
10		ual Molecular Reality 187 of. Marvin Minsky Tinkertoy, Meccano, and Erector Sets 187
	10.1	Quantum certainty 189
	10.2	Missteps toward micromachinery 190
	10.3	
	10.5	17 1140 00 400 1101 127 1
	10.5	Gauging progress 194
	10.7	Discussion 194
	10.7	Discussion 171
11		ecular Manufacturing as a Path to Space 197 r. K. Eric Drexler
	11.1	A brief sketch of our history in space 197
	11.2	Better vehicles to get to space 198
	11.3	Getting around in space 199
	11.4	Why go into space? 200
	11.5	Living in space 200

11	_	Discussion	202
11	fi.	Discussion	2012

12	Nanotechnology Research and Development		
	Sponsorship	207	
	t. Mart to an boat of		

by Neil	Jacobstein
---------	------------

12.1	Where	are we	now?	208
12.1	Where	are we	now?	- 20

- 12.2 Where are we going? 214
- 12.3 How do we get there? 215
- 12.4 So what? 216
- 12.5 Discussion 217

13 Nanotechnology in Japan 221 by Dr. Charles Sweet

- 13.1 MITI-sponsored research 222
- 13.2 STA-sponsored research 223
- 13.3 MESC-sponsored research 224
- 13.4 Cooperation among MITI, STA, and MESC 225

230

13.5 The corporate sector 226

14 The Politics of Technology in the United States: The Background for the Coming Era of Nanotechnology Politics 229 by James C. Bennett

- 14.1 The politics of technology
- 14.2 A lesson from space policy 231
- 14.3 Players in the government 232
- 14.4 Influencing the government 237
- 14.5 Industrial policy? 238
- 14.6 Discussion 244

15 Nanotech: A Venture Perspective 245 by John Doerr

- 15.1 Lessons learned 248
- 15.2 Commercialization 249
- 15.3 Public policy 252

Contents xiii

1	5.4	Discussion	255
Ŧ	J.4	Discussion	433

16	The Open Society and Its Media	261
	by Mark S. Miller	

16.1	Improving society 261
16.2	Media matter 262
16.3	Xanadu 263
16.4	Links 264
16.5	Hyperlinks 265
16.6	Emergent properties 266
16.7	Transclusion 267
16.8	Remembering the past: historical trails 268
16.9	Preparing for the future: detectors 269
16.10	The WidgetPerfect saga 269
16.11	Permissions 272
16.12	Reputation-based filtering 272
16.13	Hypertext + multimedia = hypermedia 274
16.14	External transclusion 274
16.15	Conclusions 274

276

Index 277

16.16 Acknowledgments