CONTENTS

P	REF	ACE	ix
LI	ST C	OF ILLUSTRATIONS	хi
1	INF	EN FUNDAMENTAL QUESTIONS OF LIMITS TO ORMATION IN THE QUANTUM MEASUREMENT A SINGLE SYSTEM	1
	1.1	Meaning of the Quantum Wavefunction / 3	
	1.2	Nature of the Quantum Zeno Effect / 6	
	1.3	Fundamental Quantum Limit to Precision Measurements / 7	
	1.4	Conclusion / 9	
2		OSSIBILITY OF DETERMINING THE UNKNOWN ANTUM WAVEFUNCTION OF A SINGLE SYSTEM	11
	2.1	Introduction / 11	
	2.2	Generalized Model of the Quantum Measurement of a Single System / 17	
	2.3	Statistics of the Result of a Quantum Measurement of a Single System / 18	
	2.4	Statistics of the Results of a Series of Quantum Measurements of a Single System / 19	
	2.5	Conclusion / 21	

3			M NONDEMOLITION (QND) MEASUREMENTS GLE SYSTEM	23
	3.1	Introd	duction / 23	
	3.2 3.3	Photo	of QND Measurements of a Single System / 26 on-Number QND Measurements of a Single szed Wavepacket of Light / 31	
		3.3.1	Measurement of a Single Squeezed Wavepacket / 34	
		3.3.2	Measurement of an Ensemble of Identical Squeezed Wavepackets / 35	
		3.3.3	Saturated Quantum Brownian Motion and Continuous Collapse of the Squeezed Wavepacket / 37	
		3.3.4	Statistics of Results of a Series of Photon-Number QND Measurements of a Single Squeezed Wavepacket / 39	
		3.3.5	Consistency with the Upper Limit to the Quantum Channel Capacity / 41	
		3.3.6	Impossibility of Determining the Wavefunction of the Squeezed Wavepacket due to the Reduction / 44	
	3.4		Measurements of the Quadrature Amplitudes ingle Squeezed State of Light / 45	
	3.5	QND	Measurement as a Protective Measurement / 48	
	3.6	Concl	lusion / 50	
4			EMENTS WITHOUT ENTANGLEMENT OF A DUANTUM SYSTEM	51
	4.1	Intro	duction / 51	
	4.2		urement without Entanglement of a Squeezed conic Oscillator State / 53	
	4.3		of Measurements without Entanglement of a e Squeezed Harmonic Oscillator State / 56	
	4.4		ctive Measurement of a Single Squeezed conic Oscillator State / 58	
		4.4.1	Driving the Signal Back to Its Initial Excitation / 58	

		4.4.2 Protective Measurement of a Single Squeezed State Is Equivalent to a Measurement of an Ensemble of Identical Squeezed States / 60	
	4.5	Protective Measurement: Both a QND Measurement and a Measurement without Entanglement / 62	
	4.6	Conclusion / 63	
5		ABATIC MEASUREMENTS OF A SINGLE ANTUM SYSTEM	65
	5.1	Introduction / 65	
	5.2	Position Measurement of a Single Harmonic Oscillator in an Energy Eigenstate / 68	
		5.2.1 Exact Solution / 68	
		 5.2.2 Adiabatic Approximated Solution / 69 5.2.3 Comparison of the Adiabatic Approximated Solution to the Exact Solution / 70 	
	5.3	Conclusion / 73	
6	QUA	ANTUM ZENO EFFECT OF A SINGLE SYSTEM	75
	6.1	Introduction / 75	
	6.2	Two-Level Atom in a Single-Mode Cavity / 78	
		6.2.1 Unitary Time Evolution of the Photon-Number in the Cavity / 80	
		6.2.2 Series of QND Measurements of the Photon-Number in the Cavity / 82	
	6.3	Schrödinger and Heisenberg Pictures: Equivalence to the Impossibility of Determining the Quantum Wavefunction of a Single System / 86	
	6.4	Conclusion / 89	
7	FOF	IDAMENTAL QUANTUM LIMIT TO EXTERNAL RCE DETECTION VIA MONITORING A SINGLE RMONIC OSCILLATOR (OR FREE MASS)	91
	7.1 7.2	Introduction / 91 Monitoring the Dynamic Observables of a Single Driven Free Mass / 95 7.2.1 Momentum Monitoring / 95	

7

7.2.4

	7.3	Equivalence to the Impossibility of Determining the Quantum State of a Single Driven Free Mass / 104	
	7.4	Meaning of the Uncertainty Principle and Completeness of Quantum Mechanics / 105	
	7.5	Monitoring the Dynamic Observables of a Single Driven Harmonic Oscillator / 110	
	7.6	Monitoring the Number of Quanta of Energy of a Single Driven Harmonic Oscillator / 111	
	7.7	Equivalence to the Quantum Zeno Effect of a Single Driven Harmonic Oscillator / 113	
	7.8	Conclusion / 115	
8		ABLISHED LIMITS TO INFORMATION IN THE ANTUM MEASUREMENT OF A SINGLE SYSTEM	117
	8.1	The Quantum Wavefunction Has an Epistemological Meaning Only / 117	
	8.2	The Quantum Zeno Effect Is Truly a Measurement Effect / 118	
	8.3	There Is a Fundamental Quantum Limit to External	
		Force Detection via Monitoring a Driven Harmonic Oscillator / 118	
В	IBLIC		123
	IBLIC	Oscillator / 118 DGRAPHY	123 133

7.2.2 Direct Measurement of the Momentum

7.2.3 Contractive State Measurements Beat the

Position Monitoring / 102

Standard Quantum Limit (SQL) in Position Monitoring with State Resetting / 99 Without State Resetting There Is SQL in

Change / 97