Contents

	Prej	face	<i>page</i> xi
	Intro	oduction	1
1	The concept of a manifold		4
	1.1	Topology and continuous maps	4
	1.2	Classes of smoothness of maps of Cartesian spaces	6
	1.3	Smooth structure, smooth manifold	7
	1.4	Smooth maps of manifolds	11
	1.5	A technical description of smooth surfaces in \mathbb{R}^n	16
		Summary of Chapter 1	20
2	Vect	for and tensor fields	21
	2.1	Curves and functions on M	22
	2.2	Tangent space, vectors and vector fields	23
	2.3	Integral curves of a vector field	30
	2.4	Linear algebra of tensors (multilinear algebra)	34
	2.5	Tensor fields on M	45
	2.6	Metric tensor on a manifold	48
		Summary of Chapter 2	53
3	Mappings of tensors induced by mappings of manifolds		54
	3.1	Mappings of tensors and tensor fields	54
	3.2	Induced metric tensor	60
		Summary of Chapter 3	63
4	Lie derivative		65
	4.1	Local flow of a vector field	65
	4.2	Lie transport and Lie derivative	70
	4.3	Properties of the Lie derivative	72
	4.4	Exponent of the Lie derivative	75
	4.5	Geometrical interpretation of the commutator $[V, W]$,	7-
	4.0	non-holonomic frames	77
	4.6	Isometries and conformal transformations, Killing	0.1
		equations	81
		Summary of Chapter 4	91

vi Contents

5	Exterior algebra		93
	5.1	Motivation: volumes of parallelepipeds	93
	5.2	p-forms and exterior product	95
	5.3	Exterior algebra ΛL^*	102
	5.4	Interior product i_v	105
	5.5	Orientation in L	106
	5.6	Determinant and generalized Kronecker symbols	107
	5.7	The metric volume form	112
	5.8	Hodge (duality) operator *	118
		Summary of Chapter 5	125
6	Differential calculus of forms		126
	6.1	Forms on a manifold	126
	6.2	Exterior derivative	128
	6.3	Orientability, Hodge operator and volume form on M	133
	6.4	V-valued forms	139
		Summary of Chapter 6	143
7	Integ	gral calculus of forms	144
	7.1	Quantities under the integral sign regarded as	
		differential forms	144
	7.2	Euclidean simplices and chains	146
	7.3	Simplices and chains on a manifold	149
	7.4	Integral of a form over a chain on a manifold	150
	7.5	Stokes' theorem	151
	7.6	Integral over a domain on an orientable manifold	153
	7.7	Integral over a domain on an orientable Riemannian manifold	159
	7.8	Integral and maps of manifolds	161
		Summary of Chapter 7	163
8	Particular cases and applications of Stokes' theorem		164
	8.1	Elementary situations	164
	8.2	Divergence of a vector field and Gauss' theorem	166
	8.3	Codifferential and Laplace–deRham operator	171
	8.4	Green identities	177
	8.5	Vector analysis in E^3	178
	8.6	Functions of complex variables	185
		Summary of Chapter 8	188
9	Poincaré lemma and cohomologies		190
	9.1	Simple examples of closed non-exact forms	191
	9.2	Construction of a potential on contractible manifolds	192
	9.3*		198
		Summary of Chapter 9	203
10	Lie g	groups: basic facts	204
	10.1	Automorphisms of various structures and groups	204

Contents	3/11
Contents	A 11

	10.2	Lie groups: basic concepts	210
		Summary of Chapter 10	213
11	Diffe	erential geometry on Lie groups	214
	11.1	Left-invariant tensor fields on a Lie group	214
	11.2	Lie algebra \mathcal{G} of a group G	222
	11.3	One-parameter subgroups	225
	11.4	Exponential map	227
	11.5	Derived homomorphism of Lie algebras	230
	11.6	Invariant integral on G	231
	11.7	Matrix Lie groups: enjoy simplifications	232
		Summary of Chapter 11	243
12	Repr	esentations of Lie groups and Lie algebras	244
	12.1	Basic concepts	244
	12.2	Irreducible and equivalent representations, Schur's lemma	252
	12.3	Adjoint representation, Killing-Cartan metric	259
	12.4	Basic constructions with groups, Lie algebras and their representations	269
	12.5	Invariant tensors and intertwining operators	278
	12.6	Lie algebra cohomologies	282
		Summary of Chapter 12	287
13	Actio	ons of Lie groups and Lie algebras on manifolds	289
	13.1	Action of a group, orbit and stabilizer	289
	13.2	The structure of homogeneous spaces, G/H	294
	13.3	Covering homomorphism, coverings $SU(2) \rightarrow SO(3)$ and	
		$SL(2,\mathbb{C}) \to L_+^{\uparrow}$	299
	13.4	Representations of G and G in the space of functions on a G -space,	
		fundamental fields	310
	13.5	Representations of G and $\mathcal G$ in the space of tensor fields of type $\hat ho$	319
		Summary of Chapter 13	325
14	Ham	iltonian mechanics and symplectic manifolds	327
	14.1	Poisson and symplectic structure on a manifold	327
	14.2	Darboux theorem, canonical transformations and symplectomorphisms	336
	14.3	Poincaré-Cartan integral invariants and Liouville's theorem	341
	14.4	Symmetries and conservation laws	346
	14.5	Moment map	349
	14.6	Orbits of the coadjoint action	354
	14.7	Symplectic reduction	360
		Summary of Chapter 14	368
15	Paral	lel transport and linear connection on M	369
	15.1	Acceleration and parallel transport	369
	15.2	Parallel transport and covariant derivative	372
	15.3	Compatibility with metric, RLC connection	382
	15.4	Geodesics	389

viii Contents

	15.5 The curvature tensor	401
	15.6 Connection forms and Cartan structure equations	406
	15.7 Geodesic deviation equation (Jacobi's equation)	418
	15.8* Torsion, complete parallelism and flat connection	422
	Summary of Chapter 15	428
16	Field theory and the language of forms	429
	16.1 Differential forms in the Minkowski space $E^{1.3}$	430
	16.2 Maxwell's equations in terms of differential forms	436
	16.3 Gauge transformations, action integral	441
	16.4 Energy-momentum tensor, space-time symmetries and conservation	
	laws due to them	448
	16.5* Einstein gravitational field equations, Hilbert and Cartan action	458
	16.6* Non-linear sigma models and harmonic maps	467
	Summary of Chapter 16	476
17	Differential geometry on TM and T^*M	478
	17.1 Tangent bundle TM and cotangent bundle T^*M	478
	17.2 Concept of a fiber bundle	482
	17.3 The maps Tf and T^*f	485
	17.4 Vertical subspace, vertical vectors	487
	17.5 Lifts on TM and T^*M	488
	17.6 Canonical tensor fields on TM and T^*M	494
	17.7 Identities between the tensor fields introduced here	497
	Summary of Chapter 17	497
18	Hamiltonian and Lagrangian equations	499
	18.1 Second-order differential equation fields	499
	18.2 Euler–Lagrange field	500
	18.3 Connection between Lagrangian and Hamiltonian mechanics,	
	Legendre map	505
	18.4 Symmetries lifted from the base manifold (configuration space)	508
	18.5 Time-dependent Hamiltonian, action integral	518
	Summary of Chapter 18	522
19	Linear connection and the frame bundle	524
	19.1 Frame bundle $\pi: LM \to M$	524
	19.2 Connection form on <i>LM</i>	527
	19.3 k-dimensional distribution \mathcal{D} on a manifold \mathcal{M}	530
	19.4 Geometrical interpretation of a connection form: horizontal	
	distribution on LM	538
	19.5 Horizontal distribution on <i>LM</i> and parallel transport on <i>M</i>	543
	19.6 Tensors on M in the language of LM and their parallel transport	545
	Summary of Chapter 19	550
20	Connection on a principal G-bundle	551
	20.1 Principal G-bundles	551

Contents	ix

	20.2 Connection form $\omega \in \Omega^1(P, Ad)$	559
	20.3 Parallel transport and the exterior covariant derivative <i>D</i>	563
	20.4 Curvature form $\Omega \in \Omega^2(P, Ad)$ and explicit expressions of D	567
	20.5* Restriction of the structure group and connection	576
	Summary of Chapter 20	585
21	Gauge theories and connections	587
	21.1 Local gauge invariance: "conventional" approach	587
	21.2 Change of section and a gauge transformation	594
	21.3 Parallel transport equations for an object of type ρ in a gauge σ	600
	21.4 Bundle $P \times_{\rho} V$ associated to a principal bundle $\pi: P \to M$	606
	21.5 Gauge invariant action and the equations of motion	607
	21.6 Noether currents and Noether's theorem	618
	21.7* Once more (for a while) on <i>LM</i>	626
	Summary of Chapter 21	633
22*	Spinor fields and the Dirac operator	635
	22.1 Clifford algebras $C(p,q)$	637
	22.2 Clifford groups Pin (p, q) and Spin (p, q)	645
	22.3 Spinors: linear algebra	650
	22.4 Spin bundle $\pi: SM \to M$ and spinor fields on M	654
	22.5 Dirac operator	662
	Summary of Chapter 22	670
App	endix A Some relevant algebraic structures	673
	A.1 Linear spaces	673
	A.2 Associative algebras	676
	A.3 Lie algebras	676
	A.4 Modules	679
	A.5 Grading	680
	A.6 Categories and functors	681
App	endix B Starring	683
- •	Bibliography	685
	Index of (frequently used) symbols	687
	Index	690