Contents

	Prefa	ice to second edition	<i>page</i> xii
	Prefa	ice to first edition	xiii
1	Basi	1	
	1.1	External state variables	1
	1.2	Internal state variables	3
	1.3	The first law of thermodynamics	5
	1.4	Freezing-in conditions	9
	1.5	Reversible and irreversible processes	10
	1.6	Second law of thermodynamics	13
	1.7	Condition of internal equilibrium	17
	1.8	Driving force	19
	1.9	Combined first and second law	21
	1.10	General conditions of equilibrium	23
	1.11	Characteristic state functions	24
	1.12	Entropy	26
2	Man	ipulation of thermodynamic quantities	30
	2.1	Evaluation of one characteristic state function from another	30
	2.2	Internal variables at equilibrium	31
	2.3	Equations of state	33
	2.4	Experimental conditions	34
	2.5	Notation for partial derivatives	37
	2.6	Use of various derivatives	38
	2.7	Comparison between C_V and C_P	40
	2.8	Change of independent variables	41
	2.9	Maxwell relations	43
3	Syste	ems with variable composition	45
	3.1	Chemical potential	45
	3.2	Molar and integral quantities	46
	3.3	More about characteristic state functions	48

	3.4	Additivity of extensive quantities. Free energy and exergy	51
	3.5	Various forms of the combined law	52
	3.6	Calculation of equilibrium	54
	3.7	Evaluation of the driving force	56
	3.8	Driving force for molecular reactions	58
	3.9	Evaluation of integrated driving force as function of	
		T or P	59
	3.10	Effective driving force	60
4	Prac	tical handling of multicomponent systems	63
	4.1	Partial quantities	63
	4.2	Relations for partial quantities	65
	4.3	Alternative variables for composition	67
	4.4	The lever rule	70
	4.5	The tie-line rule	71
	4.6	Different sets of components	74
	4.7	Constitution and constituents	75
	4.8	Chemical potentials in a phase with sublattices	77
5	Ther	modynamics of processes	80
	5.1	Thermodynamic treatment of kinetics of	
		internal processes	80
	5.2	Transformation of the set of processes	83
	5.3	Alternative methods of transformation	85
	5.4	Basic thermodynamic considerations for processes	89
	5.5	Homogeneous chemical reactions	92
	5.6	Transport processes in discontinuous systems	95
	5.7	Transport processes in continuous systems	98
	5.8	Substitutional diffusion	101
	5.9	Onsager's extremum principle	104
6	Stab	ility	108
	6.1	Introduction	108
	6.2	Some necessary conditions of stability	110
	6.3	Sufficient conditions of stability	113
	6.4	Summary of stability conditions	115
	6.5	Limit of stability	116
	6.6	Limit of stability against fluctuations in composition	117
	6.7		120
	6.8	Limit of stability against fluctuations of	
		internal variables	121
	6.9	Le Chatelier's principle	123

-					
	n	m	he	-	ю.

7	Appl	lications of molar Gibbs energy diagrams	126
	7.1	Molar Gibbs energy diagrams for binary systems	126
	7.2	Instability of binary solutions	131
	7.3	Illustration of the Gibbs-Duhem relation	132
	7.4	Two-phase equilibria in binary systems	135
	7.5	Allotropic phase boundaries	137
	7.6	Effect of a pressure difference on a two-phase	
		equilibrium	138
	7.7	Driving force for the formation of a new phase	142
	7.8	Partitionless transformation under local equilibrium	144
	7.9	Activation energy for a fluctuation	147
	7.10	• •	149
	7.11	Solubility product	151
8	Phas	se equilibria and potential phase diagrams	155
	8.1	Gibbs' phase rule	155
	8.2	Fundamental property diagram	157
	8.3	Topology of potential phase diagrams	162
	8.4	Potential phase diagrams in binary and multinary systems	166
	8.5	Sections of potential phase diagrams	168
	8.6	Binary systems	170
	8.7	Ternary systems	173
	8.8	Direction of phase fields in potential phase diagrams	177
	8.9	Extremum in temperature and pressure	181
9	Molar phase diagrams		
	9.1	Molar axes	185
	9.2	Sets of conjugate pairs containing molar variables	189
	9.3	Phase boundaries	193
	9.4	Sections of molar phase diagrams	195
	9.5	Schreinemakers' rule	197
	9.6	Topology of sectioned molar diagrams	201
10	Proje	ected and mixed phase diagrams	205
	10.1	Schreinemakers' projection of potential phase diagrams	205
	10.2	The phase field rule and projected diagrams	208
	10.3	Relation between molar diagrams and Schreinemakers'	
		projected diagrams	212
	10.4	Coincidence of projected surfaces	215
	10.5	Projection of higher-order invariant equilibria	217
	10.6	The phase field rule and mixed diagrams	220
	10.7	Selection of axes in mixed diagrams	223

	10.8	Konovalov's rule	226	
	10.9	General rule for singular equilibria	229	
11	Direction of phase boundaries			
	11.1	Use of distribution coefficient	233	
	11.2	Calculation of allotropic phase boundaries	235	
	11.3	Variation of a chemical potential in a two-phase field	238	
	11.4	Direction of phase boundaries	240	
	11.5	Congruent melting points	244	
	11.6	Vertical phase boundaries	248	
	11.7	Slope of phase boundaries in isothermal sections	249	
	11.8	The effect of a pressure difference between two phases	251	
12	Shar	p and gradual phase transformations	25 3	
	12.1	Experimental conditions	253	
		Characterization of phase transformations	255	
			259	
	12.4	Phase transformations in alloys	261	
	12.5	1.1	262	
	12.6	Applications of Schreinemakers' projection	266	
	12.7	Scheil's reaction diagram	270	
	12.8	Gradual phase transformations at fixed composition	272	
	12.9	Phase transformations controlled by a chemical potential	275	
13	Transformations in closed systems			
	13.1	The phase field rule at constant composition	279	
	13.2	Reaction coefficients in sharp transformations		
		for $p = c + 1$	280	
	13.3	Graphical evaluation of reaction coefficients	283	
	13.4	8		
		for $p = c$	285	
		0	287	
	13.6	Driving force under constant chemical potential	291	
	13.7	Reaction coefficients at constant chemical potential	294	
	13.8	Compositional degeneracies for $p = c$	295	
	13.9	Effect of two compositional degeneracies for $p = c - 1$	299	
14	Parti	itionless transformations	302	
	14.1	Deviation from local equilibrium	302	
	14.2	Adiabatic phase transformation	303	
	14.3	Quasi-adiabatic phase transformation	305	
	14.4	Partitionless transformations in binary system	308	

Contents	ix

	145	75 - 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	211
		Partial chemical equilibrium	311
	14.6	Transformations in steel under quasi-paraequilibrium	315
	14.7	Transformations in steel under partitioning of alloying elements	319
15	Limit	of stability and critical phenomena	322
	15.1	Transformations and transitions	322
	15.2	Order-disorder transitions	325
	15.3	Miscibility gaps	330
	15.4	Spinodal decomposition	334
	15.5	Tri-critical points	338
16	Interf	aces	344
	16.1	Surface energy and surface stress	344
	16.2	Phase equilibrium at curved interfaces	345
	16.3	Phase equilibrium at fluid/fluid interfaces	346
	16.4	Size stability for spherical inclusions	350
	16.5	Nucleation	351
	16.6	Phase equilibrium at crystal/fluid interface	353
	16.7	Equilibrium at curved interfaces with regard to composition	356
	16.8	Equilibrium for crystalline inclusions with regard to composition	359
	16.9	Surface segregation	361
	16.10	Coherency within a phase	363
	16.11	Coherency between two phases	366
	16.12	Solute drag	371
17	Kineti	ics of transport processes	377
	17.1	Thermal activation	377
	17.2	Diffusion coefficients	381
	17.3	Stationary states for transport processes	384
	17.4	Local volume change	388
	17.5	Composition of material crossing an interface	390
	17.6	Mechanisms of interface migration	391
	17.7	Balance of forces and dissipation	396
18	Meth	ods of modelling	400
	18.1	General principles	400
	18.2	Choice of characteristic state function	401
	18.3	Reference states	402
	18.4	Representation of Gibbs energy of formation	405
	18.5	Use of power series in T	407
	18.6	Representation of pressure dependence	408
	18.7	Application of physical models	410

	18.8	Ideal gas	411
		Real gases	412
		Mixtures of gas species	415
		_ · ·	417
	18.12	Electron gas	418
19	Mode	lling of disorder	420
	19.1	Introduction	420
	19.2	Thermal vacancies in a crystal	420
	19.3	Topological disorder	423
	19.4	Heat capacity due to thermal vibrations	425
	19.5	Magnetic contribution to thermodynamic properties	429
	19.6	A simple physical model for the magnetic contribution	431
	19.7	Random mixture of atoms	434
	19.8	Restricted random mixture	436
	19.9	Crystals with stoichiometric vacancies	437
	19.10	Interstitial solutions	439
20	Math	ematical modelling of solution phases	441
	20.1	Ideal solution	441
	20.2	Mixing quantities	443
	20.3	Excess quantities	444
	20.4	Empirical approach to substitutional solutions	445
		Real solutions	448
	20.6	Applications of the Gibbs-Duhem relation	452
	20.7	Dilute solution approximations	454
	20.8	Predictions for solutions in higher-order systems	456
	20.9	Numerical methods of predictions for higher-order systems	458
21	Solut	ion phases with sublattices	460
	21.1	Sublattice solution phases	460
		Interstitial solutions	462
		Reciprocal solution phases	464
		Combination of interstitial and substitutional solution	468
	21.5	Phases with variable order	469
	21.6	Ionic solid solutions	472
22	Physi	ical solution models	476
	22.1	Concept of nearest-neighbour bond energies	476
	22.2	8 a substitutional bolation	478
	22.3		479
	22.4	Short-range order	482

22.5	Long-range order	484
	Long- and short-range order	486
22.7	The compound energy formalism with short-range order	488
22.8	Interstitial ordering	490
22.9	Composition dependence of physical effects	493
Referei	nces	496
Index		499

Contents

χi