Contents

Pre	eface		page xi
Fre	equen	tly Used Notation	xiii
PA	RT C	ONE. TWO-PHASE FLOW	
1	The	rmodynamic and Single-Phase Flow Fundamentals	3
	1.1	States of Matter and Phase Diagrams for Pure Substances	3
		1.1.1 Equilibrium States	3
		1.1.2 Metastable States	5
	1.2	Transport Equations and Closure Relations	7
	1.3	Single-Phase Multicomponent Mixtures	10
	1.4	Phase Diagrams for Binary Systems	15
	1.5	Thermodynamic Properties of Vapor-Noncondensable Gas Mixtures	17
	1.6	Transport Properties	21
		1.6.1 Mixture Rules	21
		1.6.2 Gaskinetic Theory	21
		1.6.3 Diffusion in Liquids	25
	1.7	Turbulent Boundary Layer Velocity and Temperature Profiles	26
	1.8	Convective Heat and Mass Transfer	30
2	Gas	-Liquid Interfacial Phenomena	38
	2.1	Surface Tension and Contact Angle	38
		2.1.1 Surface Tension	38
		2.1.2 Contact Angle	41
		2.1.3 Dynamic Contact Angle and Contact Angle Hysteresis	42
		2.1.4 Surface Tension Nonuniformity	43
	2.2	Effect of Surface-Active Impurities on Surface Tension	44
	2.3	Thermocapillary Effect	46
	2.4	Disjoining Pressure in Thin Films	49
	2.5	Liquid-Vapor Interphase at Equilibrium	50
	2.6	Attributes of Interfacial Mass Transfer	52
		2.6.1 Evaporation and Condensation	52
		2.6.2 Sparingly Soluble Gases	57
	2.7	Semi-Empirical Treatment of Interfacial Transfer Processes	59
	2.8	Interfacial Waves and the Linear Stability Analysis Method	64
	2.9	Two-Dimensional Surface Waves on the Surface of an Inviscid	
		and Quiescent Liquid	66
	2.10	Rayleigh-Taylor and Kelvin-Helmholtz Instabilities	68

vi Contents

	2.11	Rayleigh-Taylor Instability for a Viscous Liquid	74	
		Waves at the Surface of Small Bubbles and Droplets	76	
	2.13	Growth of a Vapor Bubble in Superheated Liquid	80	
3	Two-	Phase Mixtures, Fluid Dispersions, and Liquid Films	89	
	3.1	Introductory Remarks about Two-Phase Mixtures	89	
	3.2	Time, Volume, and Composite Averaging	90	
		3.2.1 Phase Volume Fractions	90	
		3.2.2 Averaged Properties	92	
	3.3	Flow-Area Averaging	93	
	3.4	Some Important Definitions for Two-Phase Mixture Flows	94	
		3.4.1 General Definitions	94	
		3.4.2 Definitions for Flow Area-Averaged one-Dimensional Flow	95	
		3.4.3 Homogeneous-Equilibrium Flow	97	
	3.5	Convention for the Remainder of This Book	97	
	3.6	Particles of One Phase Dispersed in a Turbulent Flow Field		
		of Another Phase	98	
		3.6.1 Turbulent Eddies and Their Interaction with Suspended Fluid Particles	98	
		3.6.2 The Population Balance Equation	103	
		3.6.3 Coalescence	105	
		3.6.4 Breakup	105	
	3.7	Conventional, Mini-, and Microchannels	107	
	5.7	3.7.1 Basic Phenomena and Size Classification for	107	
		Single-Phase Flow	107	
		3.7.2 Size Classification for Two-Phase Flow	111	
	3.8	Laminar Falling Liquid Films	112	
	3.9	Turbulent Falling Liquid Films	114	
		Heat Transfer Correlations for Falling Liquid Films	115	
	3.11	Mechanistic Modeling of Liquid Films	117	
4	Two-Phase Flow Regimes – I			
	4.1	Introductory Remarks	121	
	4.2	Two-Phase Flow Regimes in Adiabatic Pipe Flow	122	
		4.2.1 Vertical, Cocurrent, Upward Flow	122	
		4.2.2 Cocurrent Horizontal Flow	126	
	4.3	Flow Regime Maps for Pipe Flow	129	
	4.4	Two-Phase Flow Regimes in Vertical Rod Bundles	130	
	4.5	Comments on Empirical Flow Regime Maps	134	
5	Two	-Phase Flow Modeling	. 137	
	5.1	General Remarks	137	
	5.2	Local Instantaneous Equations and Interphase Balance Relations	138	
	5.3	Two-Phase Flow Models	141	
	5.4	Flow-Area Averaging	142	
	5.5	One-Dimensional Homogeneous-Equilibrium Model:		
	5 4	Single-Component Fluid	144	
	5.6	One-Dimensional Homogeneous-Equilibrium Model:	1 40	
	5.7	Two-Component Mixture One-Dimensional Separated Flow Model: Single-Component Fluid	148 149	
	5.8	One-Dimensional Separated Flow Model: Two-Component Fluid	148	

Contents

	5.9 5.10	Multidimensional Two-Fluid Model Numerical Solution of Steady, One-Dimensional Conservation Equations	160 163
		5.10.1 Casting the One-Dimensional ODE Model Equations in a Standard Form	163
		5.10.2 Numerical Solution of the ODEs	169
6	The	Drift Flux Model and Void-Quality Relations	173
	6.1	The Concept of Drift Flux	173
	6.2	Two-Phase Flow Model Equations Based on the DFM	176
	6.3	DFM Parameters for Pipe Flow	177
	6.4 6.5	DFM Parameters for Rod Bundles DFM in Minichannels	178 179
	6.6	Void-Quality Correlations	180
7	Two	-Phase Flow Regimes – II	186
	7.1	Introductory Remarks	186
	7.2	Upward, Cocurrent Flow in Vertical Tubes	186
		7.2.1 Flow Regime Transition Models of Taitel et al.	186
		7.2.2 Flow Regime Transition Models of Mishima and Ishii	189
	7.3	Cocurrent Flow in a Near-Horizontal Tube	193
	7.4	Two-Phase Flow in an Inclined Tube	197
	7.5	Dynamic Flow Regime Models and Interfacial Surface Area Transport Equations	199
		7.5.1 The Interfacial Area Transport Equation	199
		7.5.2 Simplification of the Interfacial Area Transport Equation	201
8	Pres	sure Drop in Two-Phase Flow	207
	8.1	Introduction	207
	8.2	Two-Phase Frictional Pressure Drop in Homogeneous Flow and the	
		Concept of a Two-Phase Multiplier	208
	8.3	Empirical Two-Phase Frictional Pressure Drop Methods	210
	8.4	General Remarks about Local Pressure Drops	214
	8.5	Single–Phase Flow Pressure Drops Caused by Flow Disturbances	215
		8.5.1 Single-Phase Flow Pressure Drop across a Sudden Expansion8.5.2 Single-Phase Flow Pressure Drop across a Sudden Contraction	217
		8.5.2 Single-Phase Flow Pressure Drop across a Sudden Contraction8.5.3 Pressure Change Caused by Other Flow Disturbances	219 219
	8.6	Two-Phase Flow Local Pressure Drops	220
9		ntercurrent Flow Limitation	228
	9.1	General Description	228
	9.2	Flooding Correlations for Vertical Flow Passages	233
	9.3	Flooding in Horizontal, Perforated Plates and Porous Media	236
	9.4	Flooding in Vertical Annular or Rectangular Passages	237
	9.5	Flooding Correlations for Horizontal and Inclined Flow Passages	240
	9.6	Effect of Phase Change on CCFL	240
	9.7	Modeling of CCFL Based on the Separated-Flow Momentum	241
4.0	æ	Equations	241
10	Two-	-Phase Flow in Small Flow Passages	245
	10.1	Two-Phase Flow Regimes in Minichannels	245
	10.2	Void Fraction in Minichannels	252

viii Contents

		Two-Phase Flow Regimes and Void Fraction in Microchannels	254
	10.4	Two-Phase Flow and Void Fraction in Thin Rectangular Channels	
		and Annuli	257
		10.4.1 Flow Regimes in Vertical and Inclined Channels	258
		10.4.2 Flow Regimes in Rectangular Channels and Annuli	259
	10.5	Two-Phase Pressure Drop	261
	10.6	Semitheoretical Models for Pressure Drop in the Intermittent	
		Flow Regime	268
	10.7	Ideal, Laminar Annular Flow	271
	10.8	The Bubble Train (Taylor Flow) Regime	272
		10.8.1 General Remarks	272
		10.8.2 Some Useful Correlations	275
	10.9	Pressure Drop Caused by Flow-Area Changes	279
PA	RT T	WO. BOILING AND CONDENSATION	
11	Pool	Boiling	287
	11.1	The Pool Boiling Curve	287
		Heterogeneous Bubble Nucleation and Ebullition	291
		11.2.1 Heterogeneous Bubble Nucleation and Active	
		Nucleation Sites	291
		11.2.2 Bubble Ebullition	296
		11.2.3 Heat Transfer Mechanisms in Nucleate Boiling	299
	11 3	Nucleate Boiling Correlations	300
		The Hydrodynamic Theory of Boiling and Critical Heat Flux	306
		Film Boiling	309
	11.5	*	
		11.5.1 Film Boiling on a Horizontal, Flat Surface	309
		11.5.2 Film Boiling on a Vertical, Flat Surface	312
		11.5.3 Film Boiling on Horizontal Tubes	315
	44.6	11.5.4 The Effect of Thermal Radiation in Film Boiling	315
		Minimum Film Boiling	316
	11.7	Transition Boiling	318
12		Boiling	321
	12.1	Forced-Flow Boiling Regimes	321
		Flow Boiling Curves	328
	12.3	Flow Patterns and Temperature Variation in Subcooled Boiling	329
	12.4	Onset of Nucleate Boiling	331
	12.5	Empirical Correlations for the Onset of Significant Void	336
	12.6	Mechanistic Models for Hydrodynamically Controlled Onset	
		of Significant Void	337
	12.7	Transition from Partial Boiling to Fully Developed Subcooled Boiling	340
	12.8	Hydrodynamics of Subcooled Flow Boiling	341
		Pressure Drop in Subcooled Flow Boiling	346
		Partial Flow Boiling	347
		Fully Developed Subcooled Flow Boiling Heat Transfer Correlations	347
		2 Characteristics of Saturated Flow Boiling	349
		3 Saturated Flow Boiling Heat Transfer Correlations	350
		Flow-Regime-Dependent Correlations for Saturated Boiling	220
		in Horizontal Channels	358
	12.15	5 Two-Phase Flow Instability	362
		<i>--</i>	202

Contents

		12.15.1 Static Instabilities	362	
		12.15.2 Dynamic Instabilities	365	
13	Critical Heat Flux and Post-CHF Heat Transfer in Flow Boiling			
	13.1	Critical Heat Flux Mechanisms	371	
	13.2	Experiments and Parametric Trends	374	
		Correlations for Upward Flow in Vertical Channels	378	
		Correlations for Subcooled Upward Flow of Water in Vertical		
		Channels	387	
	13.5	Mechanistic Models for DNB	389	
		Mechanistic Models for Dryout	392	
		CHF in Inclined and Horizontal Channels	394	
	13.8	Post-Critical Heat Flux Heat Transfer	399	
14	Flow	Boiling and CHF in Small Passages	. 405	
	14.1	Minichannel- and Microchannel-Based Cooling Systems	405	
	14.2	Boiling Two-Phase Flow Patterns and Flow Instability	407	
		14.2.1 Flow Regimes in Minichannels with Hard Inlet Conditions	410	
		14.2.2 Flow Regimes in Arrays of Parallel Channels	411	
	14.3	Onset of Nucleate Boiling and Onset of Significant Void	414	
		14.3.1 ONB and OSV in Channels with Hard Inlet Conditions	414	
		14.3.2 Boiling Initiation and Evolution in Arrays of Parallel Mini-		
		and Microchannels	417	
	14.4	Boiling Heat Transfer	419	
		14.4.1 Background and Experimental Data	419	
		14.4.2 Boiling Heat Transfer Mechanisms	420	
		14.4.3 Flow Boiling Correlations	423	
	14.5	Critical Heat Flux in Small Channels	427	
		14.5.1 General Remarks and Parametric Trends in the Available Data	427	
		14.5.2 Models and Correlations	430	
15	Fundamentals of Condensation			
	15.1	Basic Processes in Condensation	436	
	15.2	Thermal Resistances in Condensation	439	
	15.3	Laminar Condensation on Isothermal, Vertical, and Inclined		
		Flat Surfaces	441	
	15.4	Empirical Correlations for Wavy-Laminar and Turbulent Film		
		Condensation on Vertical Flat Surfaces	447	
		Interfacial Shear	449	
		Laminar Film Condensation on Horizontal Tubes	450	
		Condensation in the Presence of a Noncondensable	454	
	15.8	Fog Formation	457	
16	Internal-Flow Condensation and Condensation on Liquid Jets			
		Droplets	. 462	
		Introduction	462	
		Two-Phase Flow Regimes	463	
	16.3	Condensation Heat Transfer Correlations for a Pure Saturated Vapor	467	
		16.3.1 Correlations for Vertical, Downward Flow	467	
		16.3.2 Correlations for Horizontal Flow	469	
		16.3.3 Semi-Analytical Models for Horizontal Flow	472	

X Contents

16.4 Effect of Noncondensables on Condensation Heat Transfer	477
16.5 Direct-Contact Condensation	478
16.6 Mechanistic Models for Condensing Annular Flow	483
16.7 Flow Condensation in Small Channels	488
16.8 Condensation Flow Regimes and Pressure Drop in Small Channels	491
16.8.1 Flow Regimes in Minichannels	491
16.8.2 Flow Regimes in Microchannels	492
16.8.3 Pressure Drop in Condensing Two-Phase Flows	493
16.9 Flow Condensation Heat Transfer in Small Channels	493
17 Choking in Two-Phase Flow	499
17.1 Physics of Choking	499
17.2 Velocity of Sound in Single-Phase Fluids	499
17.3 Critical Discharge Rate in Single-Phase Flow	501
17.4 Choking in Homogeneous Two-Phase Flow	502
17.5 Choking in Two-Phase Flow with Interphase Slip	504
17.6 Critical Two-Phase Flow Models	505
17.6.1 The Homogeneous-Equilibrium Isentropic Model	505
17.6.2 Critical Flow Model of Moody	507
17.6.3 Critical Flow Model of Henry and Fauski	509
17.7 RETRAN Curve Fits for Critical Discharge of Water and Steam17.8 Critical Flow Models of Leung and Grolmes	512
17.8 Children Flow Models of Leting and Gronnes 17.9 Choked Two-Phase Flow in Small Passages	514
17.10 Nonequilibrium Mechanistic Modeling of Choked Two-Phase Flow	519 523
•	
APPENDIX A: Thermodynamic Properties of Saturated Water and Steam	529
APPENDIX B: Transport Properties of Saturated Water and Steam	531
APPENDIX C: Thermodynamic Properties of Saturated Liquid and Vapor	
for Selected Refrigerants	533
APPENDIX D: Properties of Selected Ideal Gases at 1 Atmosphere	543
APPENDIX E: Binary Diffusion Coefficients of Selected Gases	
in Air at 1 Atmosphere	549
APPENDIX F: Henry's Constant of Dilute Aqueous Solutions	
of Selected Substances at Moderate Pressures	551
APPENDIX G: Diffusion Coefficients of Selected Substances in Water	
at Infinite Dilution at 25°C	553
APPENDIX H: Lennard-Jones Potential Model Constants for Selected	
Molecules	555
APPENDIX I: Collision Integrates for the Lennard–Jones Potential Model	557
APPENDIX J: Physical Constants	559
APPENDIX K: Unit Conversions	561
References	562
	563
ITHEA	601