Contents

Preface	page xii
Notations and acronyms	XX
1 Introduction	1
1.1 Light and matter on a nanometer scale	1
1.2 What is nanophotonics?	2
1.3 Where are the photons in nanophotonics and in this book?	3
References	4
Part I Electrons and electromagnetic wav in nanostructures	'es
2 Basic properties of electromagnetic waves and quantum partic	les 9
2.1 Wavelengths and dispersion laws	g
2.2 Density of states	13
2.3 Maxwell and Helmholtz equations	16
2.4 Phase space, density of states and uncertainty relation	18
2.5 Wave function and the Schrödinger equation	20
2.6 Quantum particle in complex potentials	22
Problems	32
References	34
3 Wave optics versus wave mechanics I	35
3.1 Isomorphism of the Schrödinger and Helmholtz equations	35
3.2 Propagation over wells and barriers	37
3.3 Dielectric function of free electron gas and optical properties of m	netals 51
3.4 Propagation through a potential barrier: evanescent waves and tun	neling 54
3.5 Resonant tunneling in quantum mechanics and in optics	65
3.6 Multiple wells and barriers: spectral splitting	70
3.7 Historical comments	73
Problems	76
References	77
4 Electrons in periodic structures and quantum confinement effe	cts 79
4.1 Bloch waves	79
4.2 Reciprocal space and Brillouin zones	84

viii Contents

	4.3	Electron band structure in solids	86
	4.4	Quasiparticles: holes, excitons, polaritons	89
	4.5	Defect states and Anderson localization	93
	4.6	Quantum confinement effects in solids	97
	4.7	Density of states for different dimensionalities	99
	4.8	Quantum wells, quantum wires and quantum dots	100
	Probl	ems	107
	Refe	rences	107
5	Sem	iconductor nanocrystals (quantum dots)	110
	5.1	From atom to crystal	110
	5.2	Particle-in-a-box theory of electron—hole states	112
	5.3	Quantum chemical theory	118
	5.4	Synthesis of nanocrystals	120
	5.5	Absorption spectra, electron-hole pair states and many-body effects	125
	5.6	Luminescence	130
	5.7	Probing the zero-dimensional density of states	133
	5.8	Quantum dot matter	133
	5.9	Applications: nonlinear optics	139
	5.10	Applications: quantum dot lasers	142
		Applications: novel luminophores and fluorescent labels	148
	5.12	Applications: electro-optical properties	155
	Prob	lems	157
	Refe	rences	158
6	Nan	oplasmonics I: metal nanoparticles	166
	6.1	Optical response of metals	166
	6.2	Plasmons	174
	6.3	Optical properties of metal nanoparticles	179
	6.4	Size-dependent absorption and scattering	187
	6.5	Coupled nanoparticles	191
	6.6	Metal-dielectric core-shell nanoparticles	192
		lems	195
	Refe	rences	196
7	Ligh	t in periodic structures: photonic crystals	199
	7.1	The photonic crystal concept	199
	7.2	Bloch waves and band structure in one-dimensionally periodic structures	200
	7.3	Multilayer slabs in three dimensions: band structure and omnidirectional	
		reflection	207
	7.4	Band gaps and band structures in two-dimensional lattices	210
	7.5	Band gaps and band structure in three-dimensional lattices	213
	7.6	Multiple scattering theory of periodic structures	215
	7.7	Translation to other electromagnetic waves	216

ix Contents

	7.8	Periodic structures in Nature	217
	7.9	Experimental methods of fabrication	218
	7.10	Properties of photonic crystal slabs	225
	7.11	The speed of light in photonic crystals	232
	7.12	Nonlinear optics of photonic crystals	236
	Prob	lems	239
	Refe	rences	240
8	Ligh	t in non-periodic structures	246
	8.1	The 1/L transmission law: an optical analog to Ohm's law	246
	8.2	Coherent backscattering	251
	8.3	Towards the Anderson localization of light	253
	8.4	Light in fractal structures	258
	8.5	Light in quasiperiodic structures: Fibonacci and Penrose structures	270
	8.6	Surface states in optics: analog to quantum Tamm states	278
	8.7	General constraints on wave propagation in multilayer structures:	
		transmission bands, phase time, density of modes and energy localization	280
	8.8	Applications of turbid structures: Christiansen's filters and	
		Letokhov's lasers	289
	Prob		290
	Refe	rences	291
9	Phot	onic circuitry	295
	9.1	Microcavities and microlasers	295
	9.2	Guiding light through photonic crystals	298
	9.3	Holey fibers	303
	9.4	Whispering gallery modes: photonic dots, photonic	
		molecules and chains	305
	9.5	Propagation of waves and number coding/recognition	309
	9.6	Outlook: current and future trends	311
	Prob		312
	Refe	rences	313
10	Tunr	neling of light	317
	10.1	Tunneling of light: getting through the looking glass	317
		Light at the end of a tunnel: problem of superluminal propagation	320
		Scanning near-field optical microscopy	330
	Prob		334
	Refe	rences	334
11		oplasmonics II: metal-dielectric nanostructures	336
	11.1	Local electromagnetic fields near metal nanoparticles	336
	11.2	Optical response of a metal-dielectric composite beyond	
		Maxwell-Garnett theory	341

x Contents

	11.3	Extraordinary transparency of perforated metal films	344
	11.4	Metal-dielectric photonic crystals	346
		Nonlinear optics with surface plasmons	348
		Metal nanoparticles in a medium with optical gain	350
		Metamaterials with negative refractive index	353
		Plasmonic sensors	361
	11.9	The outlook	363
	Proble	ms	363
	Refere	nces	364
12	Wave	optics versus wave mechanics II	368
	12.1	Transfer of concepts and ideas from quantum theory of	
		solids to nanophotonics	368
	12.2	Why quantum physics is ahead	370
	12.3	Optical lessons of quantum intuition	370
	Proble	ms	372
	Refere	ences	373
	1	Part II Light-matter interaction in nanostructures	
13	Light	– matter interaction: introductory quantum electrodynamics	377
	13.1	Photons	377
	13.2	Wave-particle duality in optics	381
	13.3	Electromagnetic vacuum	382
	13.4	The Casimir effect	384
	13.5	Probability of emission of photons by a quantum system	385
	13.6	Does "Fermi's golden rule" help to understand	
		spontaneous emission?	389
	13.7	Spontaneous scattering of photons	390
	Proble		392
	Refer	ences	392
14	Densi	ty of states effects on optical processes in mesoscopic structures	395
	14.1	The Purcell effect	396
	14.2	An emitter near a planar mirror	400
	14.3	Spontaneous emission in a photonic crystal	401
	14.4	Thin layers, interfaces and stratified dielectrics	404
	14.5	Possible subnatural atomic linewidths in plasma	407
	14.6	Barnett-Loudon sum rule	408
	14.7	Local density of states: operational definition and conservation law	410
	14.8	A few hints towards understanding local density of states	411
	14.9	Thermal radiation in mesoscopic structures	413
	14.10	Density of states effects on the Raman scattering of light	415

xi Contents

	14.11	Directional emission and scattering of light defined by partial	
		density of states	416
	Proble	ems	419
	Refer	ences	419
15	Light	-matter states beyond perturbational approach	424
	15.1	Cavity quantum electrodynamics in the strong coupling regime	424
	15,2	Single-atom maser and laser	428
	15.3	Light-matter states in a photonic band gap medium	429
	15.4	Single photon sources	431
	Proble	ems	433
	Refer	ences	433
16	Plasn	nonic enhancement of secondary radiation	436
	16.1	Classification of secondary radiation	436
	16.2	How emission and scattering of light can be enhanced	437
	16.3	Local density of states in plasmonic nanostructures	439
	16.4	"Hot spots" in plasmonic nanostructures	441
	16.5	Raman scattering enhancement in metal-dielectric nanostructures	444
	16.6	Luminescence enhancement in metal-dielectric nanostructures	447
	Proble	ems	452
	Refer	ences	452
Aut	hor in	dex	455
SuF	uhiect index		458