CONTENTS

Pa	art 1 The classical picture of turbulence	
	•	F
1.	The ubiquitous nature of turbulence	3
	1.1 The experiments of Taylor and Bénard	4
	1.2 Flow over a cylinder	7
	1.3 Reynolds' experiment	8
	1.4 Common themes	9
	1.5 The ubiquitous nature of turbulence	13
	1.6 Different scales in a turbulent flow: a glimpse at the energy cascade of	
	Kolmogorov and Richardson	18
	1.7 The closure problem of turbulence	27
	1.8 Is there a 'theory of turbulence'?	29
	1.9 The interaction of theory, computation, and experiment	30
2.	The equations of fluid mechanics	34
	2.1 The Navier-Stokes equation	35
	2.1.1 Newton's second law applied to a fluid	35
	2.1.2 The convective derivative	38
	2.1.3 Integral versions of the momentum equation	40
	2.1.4 The rate of dissipation of energy in a viscous fluid	41
	2.2 Relating pressure to velocity	43
	2.3 Vorticity dynamics	44
	2.3.1 Vorticity and angular momentum	44
	2.3.2 The vorticity equation	48
	2.3.3 Kelvin's theorem	52
	2.3.4 Tracking vorticity distributions	55
	2.4 A definition of turbulence	57
3.	3. The origins and nature of turbulence	
	3.1 The nature of chaos	62
	3.1.1 From non-linearity to chaos	63
	3.1.2 More on bifurcations	66
	3.1.3 The arrow of time	69

	3.2	Some elementary properties of freely evolving turbulence	71
		3.2.1 Various stages of development	73
		3.2.2 The rate of destruction of energy in fully developed turbulence	77
		3.2.3 How much does the turbulence remember?	81
		3.2.4 The need for a statistical approach and different methods of taking averages	85
		3.2.5 Velocity correlations, structure functions, and the energy spectrum	88
		3.2.6 Is the asymptotic state universal? Kolmogorov's theory	94
		3.2.7 The probability distribution of the velocity field	97
4.	Tw	rbulent shear flows and simple closure models	105
	4.1	The exchange of energy between the mean flow and the turbulence	107
		4.1.1 Reynolds stresses and the closure problem of turbulence	108
		4.1.2 The eddy viscosity theories of Boussinesq and Prandtl	111
		4.1.3 The transfer of energy from the mean flow to the turbulence	114
		4.1.4 A glimpse at the k- ε model	119
	4.2	Wall-bounded shear flows and the log-law of the wall	122
		4.2.1 Turbulent flow in a channel and the log-law of the wall	122
		4.2.2 Inactive motion—a problem for the log-law?	127
		4.2.3 Turbulence profiles in channel flow	129
		4.2.4 The log-law for a rough wall	131
		4.2.5 The structure of a turbulent boundary layer	131
		4.2.6 Coherent structures	134
		4.2.7 Spectra and structure functions near the wall	139
	4.3	Free shear flows	142
		4.3.1 Planar jets and wakes	142
		4.3.2 The round jet	148
	4.4	Homogeneous shear flow	152
		4.4.1 The governing equations	152
		4.4.2 The asymptotic state	156
	4.5	Heat transfer in wall-bounded shear flows—the log-law revisited	157
		4.5.1 Turbulent heat transfer near a surface and the log-law for temperature	157
		4.5.2 The effect of stratification on the log-law—the atmospheric boundary layer	163
	4.6	More on one-point closure models	169
		4.6.1 A second look at the k- ε model	169
		4.6.2 The Reynolds stress model	176
		4.6.3 Large eddy simulation: a rival for one-point closures?	180
5,	The	e phenomenology of Taylor, Richardson, and Kolmogorov	188
	5.1	Richardson revisited	191
		5.1.1 Time and length scales in turbulence	191
		5.1.2 The energy cascade pictured as the stretching of turbulent eddies	195
		5.1.3 The dynamic properties of turbulent eddies: linear and angular impulse	202
	5.2	Kolmogorov revisited	211
		5.2.1 Dynamics of the small scales	211
		5.2.2 Turbulence-induced fluctuations of a passive scalar	221
	5.3	The intensification of vorticity and the stretching of material lines	228
,		5.3.1 Enstrophy production and the skewness factor	228

	5.3.2 Sheets or tubes?	231
	5.3.3 Examples of concentrated vortex sheets and tubes	234
	5.3.4 Are there singularities in the vorticity field?	236
	5.3.5 The stretching of material line elements	240
	5.3.6 The interplay of the strain and vorticity fields	243
	5.4 Turbulent diffusion by continuous movements	252
	5.4.1 Taylor diffusion of a single particle	254
	5.4.2 Richardson's law for the relative diffusion of two particles	257
	5.4.3 The influence of mean shear on turbulent dispersion	260
	5.5 Why turbulence is never Gaussian	263
	5.5.1 The experimental evidence and its interpretation	263
	5.5.2 A glimpse at closure schemes which assume near-Gaussian statistics	267
	5.6 Closure	268
P	art 2 Freely decaying, homogeneous turbulence	
5.	Isotropic turbulence (in real space)	275
	6.1 Introduction: exploring isotropic turbulence in real space	275
	6.1.1 Deterministic cartoons versus statistical phenomenology	276
	6.1.2 The strengths and weaknesses of Fourier space	281
	6.1.3 An overview of this chapter	283
	6.2 The governing equations of isotropic turbulence	293
	6.2.1 Some kinematics: velocity correlation functions and structure functions	293
	6.2.2 More kinematics: the simplifications of isotropy and the vorticity	400
	correlation function	300
	6.2.3 A summary of the kinematic relationships	304
	6.2.4 Dynamics at last: the Karman-Howarth equation	308
	6.2.5 Kolmogorov's four-fifths law	310
	6.2.6 The skewness factor and enstrophy production (reprise)	312
	6.2.7 The dynamical equation for the third-order correlations	214
	and the problem of closure	313
	6.2.8 Closure of the dynamical equations in the equilibrium range	314
	6.2.9 Quasi-normal-type closure schemes (part 1)	316
	6.2.10 Passive scalar mixing in isotropic turbulence and Yaglom's	210
	four-thirds law	318
	6.3 The dynamics of the large scales	320
	6.3.1 The classical view: Loitsyansky's integral and Kolmogorov's decay laws	322 323
	6.3.2 Landau's angular momentum 6.3.3 Batchelor's pressure forces	328
		333
	6.3.4 Saffman's spectrum 6.3.5 A consistent theory of the large scales in Batchelor turbulence	342
	6.3.5 A consistent theory of the large scales in Batchelor turbulence 6.3.6 A summary of the dynamics of the large scales	342 346
	6.4 The characteristic signature of eddies of different shape	348
	6.4.1 Townsend's model eddy and its relatives	346 349
	6.4.2 Turbulence composed of Townsend's model eddies of different sizes	349 353
	6.4.2 Turoutence composed of Townsend's model edutes of different sizes 6.4.3 Other model eddies	356 356
	ato and invalences	نادر

	6.5 Intermit	tency in the inertial-range eddies	35/
	6.5.1 A	problem for Kolmogorov's theory?	358
	6.5.2 T	he log-normal model of intermittency	360
		The $\hat{oldsymbol{eta}}$ model of intermittency	363
		ng the distribution of energy and enstrophy across the different	
	eddy size		366
	•	real-space function which represents, approximately, the variation	
		f energy with scale	366
	-	telating energy distributions in real and Fourier space	374
		Cascade dynamics in real space	379
		•	
7.		numerical simulations	394
	7.1 What is		394
		Direct numerical simulations (DNS)	394
		arge eddy simulations (LES)	398
		langers of periodicity	404
	7.3 Structure		406
		Tubes, sheets, and cascades	407
	7.3.2 C	In the taxonomy of worms and clusters of worms	412
8.	Isotropic tur	bulence (in spectral space)	419
	8.1 Kinemat	rics in spectral space	420
	8.1.1 7	he Fourier transform and its properties	421
	8.1.2 T	he Fourier transform as a filter	425
	8.1.3 T	he autocorrelation function and power spectrum	427
	8.1.4 7	he transform of the correlation tensor and the three-dimensional	
	e	nergy spectrum	431
	8.1.5 C	One-dimensional energy spectra in three-dimensional turbulence	434
	8.1.6 R	lelating the energy spectrum to the second-order structure function	438
		footnote: singularities in the spectrum due to anisotropy	440
	8.1.8 A	nother footnote: the transform of the velocity field	441
		Definitely the last footnote: what do $E(k)$ and $E_1(k)$ really represent?	442
		cs in spectral space	445
	•	n evolution equation for E(k)	445
		Closure in spectral space	448
		Quasi-normal type closure schemes (part 2)	454
Pa	art 3 Spec	ial topics	
	•	·	467
7.		te of rotation, stratification, and magnetic fields on turbulence	
	-	ortance of body forces in geophysics and astrophysics	467
		Lence of rapid rotation and stable stratification	470
		The Coriolis force	470
		The Taylor–Proudman theorem	473
		Properties of inertial waves	474
		Furbulence in rapidly rotating systems	479
	9.2.5 F	rom rotation to stratification (or from cigars to pancakes)	485

	9.3	The influence of magnetic fields I: the MHD equations	488
		9.3.1 The interaction of moving conductors and magnetic	
		fields: a qualitative overview	489
		9.3.2 From Maxwell's equations to the governing equations of MHD	494
		9.3.3 Simplifying features of low magnetic Reynolds number MHD	498
		9.3.4 Simple properties of high magnetic Reynolds number MHD	499
	9.4	The influence of magnetic fields II: MHD turbulence	503
		9.4.1 The growth of anisotropy in MHD turbulence	505
		9.4.2 The evolution of eddies at low magnetic Reynolds number	507
		9.4.3 The Landau invariant for homogeneous MHD turbulence	513
		9.4.4 Decay laws at low magnetic Reynolds number	514
		9.4.5 Turbulence at high magnetic Reynolds number	516
		9.4.6 The shaping of eddies by combined Coriolis and Lorentz forces	520
	9.5	Turbulence in the core of the earth	522
		9.5.1 An introduction to planetary dynamo theory	523
		9.5.2 Numerical simulations of the geodynamo	529
		9.5.3 Various cartoons of the geodynamo	532
		9.5.4 An α^2 model of the geodynamo based on inertial wave packets	538
	9.6	Turbulence near the surface of the sun	553
10.	Two	-dimensional turbulence	559
		The classical picture of 2D turbulence: Batchelor's self-similar	
		spectrum, the inverse energy cascade, and the $E(k) \sim k^{-3}$ enstrophy	
		flux law	560
		10.1.1 What is two-dimensional turbulence?	560
		10.1.2 What does the turbulence remember?	565
		10.1.3 Batchelor's self-similar spectrum	565
		10.1.4 The inverse energy cascade of Batchelor and Kraichnan	567
		10.1.5 Different scales in 2D turbulence	570
		10.1.6 The shape of the energy spectrum and the k^{-3} law	571
		10.1.7 Problems with the k^{-3} law	574
	10.2	Coherent vortices: a problem for the classical theories	577
		10.2.1 The evidence	577
		10.2.2 The significance	579
	10.3	The governing equations in statistical form	581
		10.3.1 Correlation functions, structure functions, and the energy spectrum	582
		10.3.2 The two-dimensional Karman–Howarth equation	586
		10.3.3 Four consequences of the Karman-Howarth equation	586
		10.3.4 The two-dimensional Karman-Howarth equation in spectral space	588
	10.4	Variational principles for predicting the final state in confined domains	591
		10.4.1 Minimum enstrophy	592
		10.4.2 Maximum entropy	594
	10.5	Quasi-two-dimensional turbulence: bridging the gap with reality	594
		10.5.1 The governing equations for shallow-water, rapidly rotating flow	595
		10.5.2 The Karman-Howarth equation for shallow-water, rapidly	
		rotating turbulence	597

Epilogue		
Appendix 1: Vector identities and an introduction to tensor notation		
A1.1 Vector identities and theorems	603	
A1.2 An introduction to tensor notation	606	
Appendix 2: The properties of isolated vortices: invariants, far-field properties,		
and long-range interactions	611	
A2.1 The far-field velocity induced by an isolated eddy	611	
A2.2 The pressure distribution in the far field	613	
A2.3 Integral invariants of an isolated eddy: linear and angular impulse	614	
A2.4 Long-range interactions between eddies	617	
Appendix 3: Hankel transforms and hypergeometric functions		
A3.1 Hankel transforms	620	
A3.2 Hypergeometric functions	621	
Appendix 4: The kinematics of homogeneous, axisymmetric turbulence		
Subject index	625	