Contents

rrelace		
1. Fluctuations in Major Economic Variables	7	
1.1. Periodic Patterns and Stylized Facts	8	
1.2. The Measurement of the Business Cycle	12	
1.2.1. Economic Indicators	13	
1.2.1.1. Harvard Barometer	13	
1.2.1.2. NBER Indicators	14	
1.2.1.3. Indicators in Germany	21	
1.2.1.4. Diagnosis and Prognosis by Means of Indicators	25	
1.2.2. Capacity Utilization	26	
1.2.2.1. Concepts Based on Single Factors of Production	29	
1.2.2.2. Concepts Based on Production Functions	33	
1.2.2.3. Wharton School Index and Surveys	38	
2. Shock-Dependent Business Cycle Theories	41	
2.1. Discrete-Time Shock-Dependent Models	42	
2.1.1. Linear Models of the Cycle	42	
2 1 1 1 The Rasic Samuelson Model	42	

VIII Contents

		2.1.1.2. Hicks' Linear Accelerator	49
		2.1.1.3. The Influence of Inventories	5
		2.1.1.4. Monetary Aspects of the Cycle	56
		2.1.2. Non-Linear Multiplier-Accelerator Models	59
		2.1.2.1. Ceiling and Floor in the Hicks Model	60
		2.1.2.2. The Influence of Ratchet Effects	6
	2.2.	Continuous-Time Shock-Dependent Models	69
	2.3.	The Kalecki Model and Mixed Difference-Differential Equations	7:
	2.4.	The Relevance of Shock-Dependent Business Cycle Theories	70
3.	Bu	siness Cycle Theory and Exogenous Shocks	7
	3.1.	The Political Business Cycle	78
		3.1.1. Governmental Behavior as the Cause of Business Cycles	80
		3.1.2. Implications of the Political Business Cycle	84
	3.2.	The Theory of Stochastic Business Cycles	86
		3.2.1. Business Cycle Models with Stochastic Exogenous Influences	8′
		3.2.2. A Stochastic Business Cycle Model	90
	3.3.	The Rational Expectations Approach to Business Cycles	94
		3.3.1. Expectations and Rationality in Economic Theory	98
		3.3.2. The New Classical Macroeconomics	100
		3.3.3. Rational Expectations Business Cycle Models	104
4.	Sho	ock-Independent Business Cycle Theories	114
	4.1.	A Linear Shock-Independent Growth Cycle Model	118
	4.2.	Goodwin's Quasi-Non-Linear Accelerator	118
	4.3.	Non-Linear Theories of the Cycle	123
		4.3.1. Kaldor's Non-Linear Investment and Savings Functions	122
		4.3.2. The Poincaré-Bendixson Theorem and the Existence of Limit Cycles	129
		4.3.2.1. Chang/Smyth's Reformulation of the Kaldor Model	132
		4.3.2.2. The Non-Linear Phillips Curve and the Cycle	136
		4.3.2.3. Non-Walrasian Macroeconomics and the Business Cycle	143
		4.3.3. Predator-Prey Interpretations of the Business Cycle	15
		4.3.4. The Liénard-van der Pol Equation	156
		4.3 4.1. The Uniqueness of Limit Cycles	156

IX

4.3.4.2. The Kaldor Model as a Liénard Equation	158	
4.3.5. The Hopf Bifurcation in Business Cycle Theory	161	
4.3.5.1. The Hopf Bifurcation in the Continuous-Time Case	162	
4.3.5.2. The Hopf Bifurcation in the Discrete-Time Case	170	
5. Complex Motion in Business Cycle Models	174	
5.1. Non-Linearities and Chaotic Movements	175	
5.1.1. Chaos in Discrete-Time Models	177	
5.1.2. Chaos and Business Cycles	184	
5.1.3. Chaos in Higher-Dimensional Systems	188	
5.1.4. Numerical Techniques and the Empirical Evidence of Chaos	194	
5.2. Catastrophe Theory and Business Cycle Theory	202	
5.2.1. Basic Ideas of Catastrophe Theory	202	
5.2.2. The Kaldor Model in the Light of Catastrophe Theory	209	
5.3. Structural Instability and Business Cycle Theory - Conclusions	215	
References		
Name Index		