Contents

Contributors

1.	Drugging cancer metabolism: Expectations vs. reality	1
	David C. Montrose and Lorenzo Galluzzi	
	1. Introduction	2
	2. Targeting carbohydrate metabolism for cancer therapy	2
	3. Targeting amino acid utilization for cancer therapy	5
	4. Targeting lipid metabolism for cancer therapy	8
	5. Obstacles to drugging bioenergetic metabolism for therapeutic purposes	12
	6. Concluding remarks	14
	Acknowledgments	15
	References	15
2.	A strategy for poisoning cancer cell metabolism: inhibition of oxidative phosphorylation coupled to anaplerotic saturation	27
	Valentina Sica, José Manuel Bravo-San Pedro, and Guido Kroemer	
	1. Introduction	28
	2. Targeting respiratory complex I with BAY 87-2243 impairs the proliferation of human non-small cell carcinoma cells and human colorectal	
	carcinoma cells	29
	3. Cellular effects of B87	30
	4. B87 and α -ketoglutarate induce a lethal metabolic catastrophe	31
	5. Synergistic lethality of B87 plus DMKG induces parthanatos and depends	
	on MDM2	32
	Acknowledgments	34
	References	34
3.	Sulfur metabolism and its contribution to malignancy	39
	Nathan P. Ward and Gina M. DeNicola	
	1. The biochemistry of sulfur	43
	2. Fundamental sulfur metabolism	53
	3. (Patho)Physiological cysteine metabolism	57
	4. (Patho)Physiological methionine metabolism	70
	5. Future perspectives	80
	References	83

4.	Diet, lipids and colon cancer	105
	Songhwa Choi and Ashley J. Snider	
	1. Introduction	106
	2. Absorption, digestion and utilization of dietary fat	106
	3. Dietary fat and colon cancer	109
	4. Bioactive lipids in CRC and the role of dietary fat	123
	5. SFA and UFA in CRC	131
	6. Challenges of the study with dietary lipids	133
	7. Conclusion	134
	References	135
5.	Autophagy and cancer cell metabolism	145
	Cara M. Anderson and Kay F. Macleod	
	1. Autophagy, the process	147
	2. Activation of autophagy by nutrient stress	152
	3. Functions of autophagy in cancer metabolism—An overview	162
	4. Autophagy versus mitophagy in cancer	166
	5. Autophagy in the tumor microenvironment	168
	6. Autophagy in RAS driven cancers and therapeutic vulnerabilities exposed	173
	7. Future directions	175
	References	176
6.	Application of metabolomics technologies toward cancer	
	prognosis and therapy	191
	Giang Hoang, Sunag Udupa, and Anne Le	
	1. Metabolomics overview	192
	2. Applications of metabolomics technologies in cancer metabolism	207
	3. Limitations of metabolomics technologies and cancer-related studies	217
	4. Concluding remarks	218
	Disclosure of potential conflicts of interest	219
	Funding	219
	References	219