Contents

Ļ	The genomic architecture of eukaryotes	1
	Eukaryotic evolution	1
	Eukaryotes are chimeras	1
	OXPHOS and the electron transport system	3
	Massive genomic restructuring	6
	The mitochondrial genome	9
	The retention of a mt genome	9
	Co-location for redox regulation (CORR)	10
	The endpoint of gene transfer	13
	Characteristics of mitochondrial genomes	15
	Classes of genes and abbreviations	18
	Summary	18
2	Forms and consequences of incompatibility	20
	Oxidative phosphorylation via the electron	
	transport system	20
	Arenas of mitonuclear interaction	24
	Protein-protein interactions	26
	Protein–DNA interactions	28
	Protein-RNA interactions	30
	Anterograde and retrograde signals	32
	Evidence for mitonuclear coadaptation	33
	Cybrid cell lines	34
	Somatic cell nuclear transfer	38
	Hybrid backcrosses	39
	Hybrid crosses: Classic studies with <i>Tigriopus</i> copepods	44
	Within-species mitonuclear studies	47
	Summary	48
3	Compensatory coevolution	49
	Mutational erosion	49
	The problem with non-recombining genomes	49

x • Contents

	The mitonuclear compensatory coevolution hypothesis	52
	Compensatory vs complementary coevolution	52
	Evidence for compensatory coevolution	54
	Evidence for N compensation for deleterious mt genes	56
	Experimental evidence of compensatory coevolution	58
	Patterns of mutation and selection in mt and N genomes	59
	Rates of evolutionary change among mt, N, and N-mt genes	59
	Alternative explanations for patterns in comparative data	64
	Whole-gene and whole-genome mechanisms of compensatory	
	coevolution	68
	Compensation through protein subunits	68
	Mitochondrial introgression as a compensatory	
	mechanism	72
	Summary	75
4	Coevolution, co-transmission, and conflict	77
	Co-transmission and coevolution	78
		78
	The tradeoff between co-transmission and evolability Sex chromosomes	70 80
		80 81
	Sex linkage and co-transmission Genomic conflict	
		86
	Nuclear restorer genes Which distates substration constantion on conflict?	91
	Which dictates eukaryotic evolution: Cooperation or conflict? Within-individual conflict: Mito vs mito	92
		92
	Endosymbionts	93
	Conflict arising from third genomes	93
	Summary	94
5	The evolution of sex and two sexes	96
	The evolution of sex	97
	The necessity of recombination	97
	The evolution of sex in light of mitochondrial evolution	100
	Avoiding mutational meltdown	104
	The evolution of two sexes	106
	The evolution of anisogamy	106
	Anisogamy, mating types, and mitochondrial inheritance	110
	Genomic conflict within an individual	110
	Selection against heteroplasmy and selection for	
	mitonuclear coadaptation	112
	Conflict versus coadaptation	115
	Summary	115

6	Life eternal in the face of senescence	117
	mt DNA mutation	119
	What underlies mutations in the mt genome?	119
	The evolution of germ lines	121
	Strong selection on germ cells before proliferation and atresia	121
	Strong selection on germ cells after proliferation and atresia	125
	Why plants and most other eukaryotes don't have a germ line	126
	Selection on the male germ line	131
	Selection across developmental stages	132
	Evolution of senescence	133
	Antagonistic pleiotropy	133
	The mitochondrial theory of aging	135
	The free radical theory of aging	136
	The replication error theory of aging	138
	Apoptotic threshold	140
	Summary	141
7	Mitonuclear speciation	143
	Traditional species concepts	144
	Speciation fundamentals: Dobzhansky-Muller incompatibility	146
	The mitonuclear compatibility species concept	151
	Mitonuclear coevolution when gene flow is disrupted	151
	mt DNA barcodes as evidence for mitonuclear speciation	155
	Mitonuclear speciation driven by mitochondrial-based adaptation	158
	Mitonuclear interactions and gene flow	160
	Allele dominance and introgression of mt and N genes	160
	Sex linkage and speciation	166
	Effects of sex linkage on mitonuclear gene interactions	166
	Darwin's corollary to Haldane's rule	169
	What does mitochondrial introgression mean for speciation?	171
	Other potential drivers of mt introgression	173
	Cytoplasmically inherited bacteria	173
	Co-introgression of coadapted mt and N-mt genes	173
	A unified concept of species	177
	Summary	178
8	Mitonuclear mate choice	179
	Mate choice basics	180
	Choice for shared mt genotype	184
	The mitonuclear compatibility hypothesis of sexual selection	184
	Ornamentation gaps coincide with barcode gaps	185

Sex linkage and sexual selection	187
ZW sex determination and ornamentation	187
Linkage of ornamental traits	189
Assessment within species	391
Signals of mitochondrial function	193
Species-typical vs condition-dependent ornamentation	194
Carotenoid coloration in birds as a signal of mitochondrial function	196
Summary	197
9 Adaptation and adaptive radiation	199
Environments to which mitochondrial adaptation is responsive	200
Mechanisms for mitonuclear adaptation	202
Mechanisms of thermal adaptation	202
Mechanism of adaptation to partial pressure of oxygen	209
Mechanisms of adaptation to diet	212
Mechanisms of adaptation to salt and hydrogen sulfide	213
The next generation of studies of functional mitochondrial adaptation	214
Evidence for adaptive evolution of mt and N-mt genes	216
Adaptation arising from standing variation in mt genotypes	216
Adaptive divergence at species boundaries	229
Adaptation via mitochondrial introgression	234
Signatures of adaptive evolution	235
Adaptive radiation via mt evolution	236
Human mt genotypes and environment	241
Summary	242
10 Epilogue	244

References	249
Index	295