Contents

	Pre	face to the Second Edition	xi
	Pre	face to the First Edition	xiii
	Not	ation	xv
1	Clas	sical Time Series Models and Financial Series	1
	1.1	Stationary Processes	1
	1.2	ARMA and ARIMA Models	3
	1.3	Financial Series	6
	1.4	Random Variance Models	10
	1.5	Bibliographical Notes	11
	1.6	Exercises	12
Pa	rt I	Univariate GARCH Models	
2	2 GARCH (p, q) Processes		17
	2.1	Definitions and Representations	17
	2.2	Stationarity Study	22
		2.2.1 The GARCH(1,1) Case	22
		2.2.2 The General Case	26
	2.3	$ARCH(\infty)$ Representation [*]	36
		2.3.1 Existence Conditions	36
		2.3.2 ARCH(∞) Representation of a GARCH	39
		2.3.3 Long-Memory ARCH	40
	2.4	Properties of the Marginal Distribution	41
		2.4.1 Even-Order Moments	42
		2.4.2 Kurtosis	45
	2.5	Autocovariances of the Squares of a GARCH	46
		2.5.1 Positivity of the Autocovariances	47
		2.5.2 The Autocovariances Do Not Always Decrease	48
		2.5.3 Explicit Computation of the Autocovariances of the Squares	48
	2.6	Theoretical Predictions	50
	2.7	Bibliographical Notes	54
	2.8	Exercises	55

.

3	Mixing*		
	3.1	Markov Chains with Continuous State Space	59
	3.2	Mixing Properties of GARCH Processes	64
	3.3	Bibliographical Notes	71
	3.4	Exercises	71
4	Alternative Models for the Conditional Variance		73
	4.1	Stochastic Recurrence Equation (SRE)	74
	4.2	Exponential GARCH Model	77
	4.3	Log-GARCH Model	82
		4.3.1 Stationarity of the Extended Log-GARCH Model	83
		4.3.2 Existence of Moments and Log-Moments	86
		4.3.3 Relations with the EGARCH Model	88
	4.4	Threshold GARCH Model	90
	4.5	Asymmetric Power GARCH Model	96
	4.6	Other Asymmetric GARCH Models	98
	4.7	A GARCH Model with Contemporaneous Conditional Asymmetry	99
	4.8	Empirical Comparisons of Asymmetric GARCH Formulations	10 1
	4.9	Models Incorporating External Information	109
	4.10	Models Based on the Score: GAS and Beta-t-(E)GARCH	113
	4.11	GARCH-type Models for Observations Other Than Returns	115
	4.12	Complementary Bibliographical Notes	119
	4.13	Exercises	120

Part II Statistical Inference

5	Identification		
	5.1	Autocorrelation Check for White Noise	125
		5.1.1 Behaviour of the Sample Autocorrelations of a GARCH Process	126
		5.1.2 Portmanteau Tests	128
		5.1.3 Sample Partial Autocorrelations of a GARCH	129
		5.1.4 Numerical Illustrations	129
	5.2	Identifying the ARMA Orders of an ARMA-GARCH	132
		5.2.1 Sample Autocorrelations of an ARMA-GARCH	132
		5.2.2 Sample Autocorrelations of an ARMA-GARCH Process When the Noise is	
		Not Symmetrically Distributed	136
		5.2.3 Identifying the Orders (P, Q)	138
	5.3	Identifying the GARCH Orders of an ARMA-GARCH Model	140
		5.3.1 Corner Method in the GARCH Case	141
		5.3.2 Applications	141
	5.4	Lagrange Multiplier Test for Conditional Homoscedasticity	143
		5.4.1 General Form of the LM Test	143
		5.4.2 LM Test for Conditional Homoscedasticity	147
	5.5	Application to Real Series	149
	5.6	Bibliographical Notes	151
	5.7	Exercises	158
6	Estimating ARCH Models by Least Squares		161
	6.1	Estimation of $ARCH(q)$ models by Ordinary Least Squares	161
	6.2	Estimation of $ARCH(q)$ Models by Feasible Generalised Least Squares	165
	6.3	Estimation by Constrained Ordinary Least Squares	168

		·	
		6.3.1 Properties of the Constrained OLS Estimator	169
		6.3.2 Computation of the Constrained OLS Estimator	170
	6.4	Bibliographical Notes	171
	6.5	Exercises	171
7	Esti	mating GARCH Models by Quasi-Maximum Likelihood	175
	7.1	Conditional Quasi-Likelihood	175
		7.1.1 Asymptotic Properties of the QMLE	177
		7.1.2 The ARCH(1) Case: Numerical Evaluation of the Asymptotic Variance	180
		7.1.3 The Non-stationary ARCH(1)	181
	7.2	Estimation of ARMA-GARCH Models by Quasi-Maximum Likelihood	183
	7.3	Application to Real Data	187
	7.4	Proofs of the Asymptotic Results*	188
	7.5	Bibliographical Notes	211
	7.6	Exercises	212
8	Test	s Based on the Likelihood	217
	8.1	Test of the Second-Order Stationarity Assumption	217
	8.2	Asymptotic Distribution of the QML When θ_0 is at the Boundary	218
	8.3	Significance of the GARCH Coefficients	226
		8.3.1 Tests and Rejection Regions	226
		8.3.2 Modification of the Standard Tests	227
		8.3.3 Test for the Nullity of One Coefficient	228
		8.3.4 Conditional Homoscedasticity Tests with ARCH Models	230
		8.3.5 Asymptotic Comparison of the Tests	232
	8.4	Diagnostic Checking with Portmanteau Tests	235
	8.5	Application: Is the GARCH(1,1) Model Overrepresented?	235
	8.6	Proofs of the Main Results*	238
	8.7	Bibliographical Notes	245
	8.8	Exercises	246
9	Opti	mal Inference and Alternatives to the QMLE*	249
	9.1	Maximum Likelihood Estimator	249
		9.1.1 Asymptotic Behaviour	250
		9.1.2 One-Step Efficient Estimator	252
		9.1.3 Semiparametric Models and Adaptive Estimators	254
		9.1.4 Local Asymptotic Normality	256
	9.2	Maximum Likelihood Estimator with Mis-specified Density	260
		9.2.1 Condition for the Convergence of $\hat{\theta}_{n,k}$ to θ_0	261
		9.2.2 Convergence of $\hat{\theta}_{nh}$ and Interpretation of the Limit	262
		9.2.3 Choice of Instrumental Density h	263
		9.2.4 Asymptotic Distribution of $\hat{\theta}_{nh}$	265
	9.3	Alternative Estimation Methods	265
		9.3.1 Weighted LSE for the ARMA Parameters	265
		9.3.2 Self-Weighted QMLE	266
		9.3.3 L_p Estimators	260
		9.3.4 Least Absolute Value Estimation	267
		9.3.5 White Estimator	268
	9.4	Bibliographical Notes	268
	9.5	Exercises	269
			207

•

•

Part III Extensions and Applications

10	Mul	tivariate GARCH Processes	273
	10.1	Multivariate Stationary Processes	273
	10.2	Multivariate GARCH Models	275
		10.2.1 Diagonal Model	276
		10.2.2 Vector GARCH Model	276
		10.2.3 Constant Conditional Correlations Models	279
		10.2.4 Dynamic Conditional Correlations Models	280
		10.2.5 BEKK-GARCH Model	281
		10.2.6 Factor GARCH Models	284
		10.2.7 Cholesky GARCH	286
	10.3	Stationarity	287
		10.3.1 Stationarity of VEC and BEKK Models	287
		10.3.2 Stationarity of the CCC Model	289
		10.3.3 Stationarity of DCC models	292
		QML Estimation of General MGARCH	292
	10.5	Estimation of the CCC Model	294
		10.5.1 Identifiability Conditions	295
		10.5.2 Asymptotic Properties of the QMLE of the CCC-GARCH model	297
	10.6	Looking for Numerically Feasible Estimation Methods	299
		10.6.1 Variance Targeting Estimation	299
		10.6.2 Equation-by-Equation Estimation	300
	10.7	Proofs of the Asymptotic Results	303
		10.7.1 Proof of the CAN in Theorem 10.7	303
		10.7.2 Proof of the CAN in Theorems 10.8 and 10.9	307
		Bibliographical Notes	312
	10.9	Exercises	313
11	Fina	ncial Applications	317
	11.1	Relation Between GARCH and Continuous-Time Models	317
		11.1.1 Some Properties of Stochastic Differential Equations	317
		11.1.2 Convergence of Markov Chains to Diffusions	319
	11.2	Option Pricing	324
		11.2.1 Derivatives and Options	324
		11.2.2 The Black-Scholes Approach	325
		11.2.3 Historic Volatility and Implied Volatilities	326
		11.2.4 Option Pricing when the Underlying Process is a GARCH	327
	11.3	Value at Risk and Other Risk Measures	331
		11.3.1 Value at Risk	332
		11.3.2 Other Risk Measures	336
		11.3.3 Estimation Methods	338
	11.4	Bibliographical Notes	340
		Exercises	342
12	Paran	neter-Driven Volatility Models	345
. 4		Stochastic Volatility Models	345
	14.1	12.1.1 Definition of the Canonical SV Model	346
		12.1.2 Stationarity	347
		12.1.2 Stationarity 12.1.3 Autocovariance Structures	349
	•	12.1.4 Extensions of the Canonical SV Model	350
		12.1.5 Quasi-Maximum Likelihood Estimation	350
		12.1. Zunst unweinnen Erkontoon Fentilienon	554

	12.2	Markov Switching Volatility Models	353
		12.2.1 Hidden Markov Models	353
		12.2.2 MS-GARCH (p, q) Process	362
	12.3	Bibliographical Notes	363
	12.4	Exercises	365
A		dicity, Martingales, Mixing	367
		Ergodicity	367
		Martingale Increments	368
	A.3	Mixing	371
		A.3.1 α-Mixing and β-Mixing Coefficients	371
		A.3.2 Covariance Inequality	373
		A.3.3 Central Limit Theorem	375
В	Auto	correlation and Partial Autocorrelation	377
	B .1	Partial Autocorrelation	377
		B.1.1 Computation Algorithm	378
		B.1.2 Behaviour of the Empirical Partial Autocorrelation	379
	B .2	Generalised Bartlett Formula for Non-linear Processes	382
С			387
		Definition of a Markov Chain	387
		Transition Probabilities	388
		Classification of States	388
		Invariant Probability and Stationarity	389
		Ergodic Results	390
		Limit Distributions	390
	C.7	Examples	391
D			393
		General Form of the Kalman Filter	394
		Prediction and Smoothing with the Kalman Filter	396
	D.3	Kalman Filter in the Stationary Case	398
	D.4	Statistical Inference with the Kalman Filter	399
Е	Solut	ions to the Exercises	401
	Refer	ences	467
Index			485

.