Contents

Foreword Preface Strands xi					
			1	Single sphere resistance	1
	Symbols	5			
	References	6			
2	Resistance of particle beds	7			
2.1	Introduction	7			
2.2	Comparison between particulate fluidization and flow through				
	fixed beds	8			
2.3	Definition of consistent, non-dimensional groups	10			
2.4	An appropriate cell model	11			
2.5	Results from investigation of the Navier-Stokes equations	13			
2.6	Dependence of the drag of a sphere on the packing geometry	19			
2.7	Experimental proof of the proposed concept	23			
2.8	Approximation formula for beds of monodisperse spherical				
	particles	26			
2.9	Approximation formula for the pressure drop across fixed beds				
	of polydisperse non-spherical particles	32			
2.10	A practical concept to evaluate the pressure drop shape				
	factor $\Phi_{\rm D}$	36			
2.11	Comparison of equation (2.56) with other approximation				
	formulae	38			
	Symbols	41			
	References	43			
3	Suspension of solid particles in agitated vessels	44			
31	Introduction	44			
3.1	Boundary layer flow in an agitated vessel	44			
3.3	Forces acting on solid particles settled in the boundary layer	49			
3.4	Experimental set-up for the detection of complete suspension				
	of solid particles	52			

vi Contents

3.5 3.6	Evaluation of experiments: suspension of solid particles Prediction of minimum angular velocities of the stirrer at	53
010	$Ar \leq 40$	55
3.7	Limits of applicability	56
3.8	Fluidization of solid particles in an agitated vessel	56
3.9	Pump characteristics of an agitated vessel	60
3 10	Experimental proof of the proposed concept	62
3 11	Limits of applicability	64
3 12	Comparison of the different criteria	65
3 13	Reliable prediction of required minimum angular velocity of	05
5.15	the stirrer	66
	Symbols	68
	Deferences	60
	References	09
4	Hydrodynamics of bubble columns	70
4.1	Introduction	70
4.2	Uniform bubbling regime: theory	71
4.3	Predictions of the theory	73
4.4	State diagram for homogeneous bubbling	75
4.5	Confirmation of equation (4.1) for low density ratios	76
4.6	Experimental set-up	77
4.7	Uniform bubbling regime: results and discussion	78
4.8	Prediction of bubble size in the homogeneous bubbling regime	81
4.9	Uniform bubbling regime: conclusions	82
4.10	Liquid circulation regime: state of the art	83
4.11	Liquid circulation regime: assumptions and definitions	84
4.12	Gas throughput due to the rise of small bubbles	88
4.13	Gas throughput due to the rise of large bubbles	89
4.14	Gas throughput due to liquid circulation	90
4.15	Non-dimensional representation of the amount of gas carried	
	by large bubbles	93
4.16	Determination of the constant C from experiments	93
4.17	State diagram for the liquid circulation regime: comparison	
	with experiments	95
4.18	Use of the state diagram for predictions	97
4.19	A three-parameter model for the residence time distribution of	
	the gas phase	100
4.20	Experimental set-up	102
4.21	Data processing	103
4.22	Verification of the three-parameter model	105
	Symbols	108
	References	110

5	Non-dimensional groups for the representation of flow	
	phenomena of disperse systems	112
5.1	Introduction	112
5.2	Presuppositions	112
5.3	Equations of motion of solid bodies	113
5.4	Forces and moments exerted by the fluid on a suspended	
	particle	114
5.5	Non-dimensional groups which define the motion of suspended	
	particles	115
5.6	Equivalent non-dimensional groups	116
5.7	Fluidization	117
5.8	Prediction of pressure drop with fully suspended flow in	
	horizontal pipes	119
5.9	Hydraulic conveying: evaluation of experiments	121
5.10	Prediction of pressure drop over the full range of transportable	
	concentrations	123
5.11	Pneumatic conveying with fully suspended flow	124
	Symbols	130
	References	132
	Carleski dense with montial phase conception	122
0	Gas/solid nows with partial phase separation	133
0.1	Introduction	135
0.2 6 2	Pheumatic conveying in horizontal pipes: experimental results	155
0.5	Requirements for a rational model resulting from the	135
6 1	Theoretical state diagram of stable strong flow	135
0.4	Plugging limit of proumotic conveying	130
0.5	Stress d flow tone pnoumatic conveying	149
0.0	Strand now type pneumatic conveying: comparison of	152
67	Conclusions with connect to prove the conveying in horizontal	152
0./	Conclusions with respect to pheumatic conveying in nonzontal	154
()	tudes	154
0.8	Fast nuldization and circulating nuldized beds	150
0.9	Axial pressure promes in the upstream part of a circulating	157
< 10	nuidized bed	157
6.10	Pressure gradients in the steady-state sections of a circulating	150
	fluidized bed	159
6.11	Partial phase separation, the essential feature of circulating	161
< 1 0	fluidized beds	161
6.12	Modelling the fluid dynamics of circulating fluidized beds	162
0.13	Momentum transfer between lean phase and strands	164
0.14	Mass and momentum balances	104
0.15	Claim dia anama tan saanaaatad aca salid Howa Mouling	
0.10	State diagrams for segregated gas-solid nows moving	167

6.16	Comparison with experimental results	178
6.17	Modes of operation of circulating fluidized beds with siphon	181
6.18	Modelling of circulating fluidized beds: conclusions	182
	Symbols	183
	References	184
7	The use of sympositic effects with action in dated and second the	
'	conveying of fragile motorials	105
71	Introduction	185
7.2	Preliminary experiments	185
7.3	Theoretical foundation of vibration-induced pneumatic	165
1.0	conveying	186
7.4	Evaluation of preferable operational regimes	180
7.5	Particulate material damage experiments	100
	Symbols	192
	References	196
		170
8	Flow behaviour of powders	197
8.1	Introduction	197
8.2	Dependence of cohesion on influencing forces	199
8.3	Consequences for theory and experiment	203
8.4	Transmission of stresses in a randomly packed bed of	
05	monodisperse spheres	204
8.5	Dependence of the adhesive forces on previous compression	210
8.0 9.7	Comparison with conceive materials	215
0./	Lomparison with experiments	226
0.0	Symbols	229
	Beferences	233
	Kelerences	235
9	Heat transfer mechanisms in gas fluidized beds	236
9.1	Introduction	236
9.2	General features of heat transfer in gas fluidized beds	236
9.3	State of the art	238
9.4	Heat transfer and fluid dynamics	239
9.5	Visual observation of particle motion close to solid surfaces	242
9.6	Basic features of particle convective heat transfer	243
9.7	Particle convective type of heat transfer in fluidized beds of	
0.0	Gas to particle hast transfer in fluidingd hads of fine series d	247
7.0	narticles	249
9.9	Correlations for gas convective heat transfer	240
9.10	Heat transfer when both particle and gas convective	249
	components are important	251
		201

9.11	General features of the dependence of heat transfer on gas	
	velocity in bubbling fluidized beds	254
9.12	Heat transfer with type A and type C powders	256
9.13	Heat transfer with type B-powders	259
9.14	Gas convective heat transfer	262
9.15	Heat transfer in circulating fluidized beds	263
	Symbols	265
	References	267
10	Types of gas fluidization	268
10.1	Introduction	268
10.2	Types of powder with gas-solid systems	268
10.3	Powder classification diagram	270
10.4	Experimental results	277
	Symbols	278
	References	279
11	Local structure of gas-fluidized beds	280
11.1	Introduction	280
11.2	Bubble features	280
11.3	Principal layout of the experimental set-up	282
11.4	Bubble flow pattern	283
	Symbols	291
	References	291

Index

293