Detailed Contents

Preface xix

1. A Grand Tour of the Heavens 1

1.1 Peering Through the Universe: A Time Machine 2
1.2 How Do We Study Things We Can't Touch? 2

Figure It Out 1.1
Keeping Track of Space and Time 3

Figure It Out 1.2
Scientific Notation 3

1.3 Finding Constellations in the Sky 5
1.3a The Autumn Sky 6

Star Party 1.1
Using the Sky Maps 7

1.3b The Winter Sky 9
1.3c The Spring Sky 10
1.3d The Summer Sky 10

1.4 How Do You Take a Tape Measure to the Stars? 11

A Closer Look 1.1
A Sense of Scale: Measuring Distances 12

1.5 The Value of Astronomy 14
1.5a The Grandest Laboratory of All 14
1.5b Origins 15

1.6 What Is Science? 16
1.7 Why Is Science Far Better Than Pseudoscience? 17

2. Light, Matter, and Energy: Powering the Universe 23

2.1 Studying a Star Is Like Looking at a Rainbow 24

Figure It Out 2.1
The Nature of Light 24

2.2 “Blackbodies” and Their Radiation 26

Figure It Out 2.2
Blackbody Radiation and Wien’s Law 26

Figure It Out 2.3
Blackbody Radiation and the Stefan–Boltzmann Law 27

2.3 What Are Those Missing Colors and Where Are They? 28

2.4 The Story Behind the Bohr Atom 30
2.5 The Doppler Effect and Motion 33

Figure It Out 2.4
Temperature Conversions 35

3. Light and Telescopes: Extending Our Senses 41

3.1 The First Telescopes for Astronomy 41
3.2 How Do Telescopes Work? 43

Modern Telescopes 46

3.3a Current Large Telescopes Around the World 46

Figure It Out 3.1
Light-Gathering Power of a Telescope 47

Figure It Out 3.2
Changing Units 47

3.3b The Next Generation of Optical and Infrared Ground-Based Telescopes 51
3.4 The Big Picture: Mapping the Sky 52

3.5 Amateurs Are Participating 53
3.6 Glorious Hubble After Initial Trouble 54
3.7 You Can’t Look at the Sun at Night 56
3.8 How Can You See the Invisible? 57

3.8a
X-ray and Gamma-ray Telescopes 57

3.8b
Telescopes for Ultraviolet Wavelengths 60

3.8c
Infrared Telescopes 60

3.8d
Radio Telescopes 62

Figure It Out 3.3
Angular Resolution of a Telescope 63

A Closer Look 3.1
A Night at Maunakea 65

3.8e
The Major New Radio Projects 66

4. Observing the Stars and Planets: Clockwork of the Universe 75

4.1 The Phases of the Moon and Planets 76
4.2 Celestial Spectacles: Eclipses 77

Star Party 4.1
Observing Total Solar Eclipses 80

Pasachoff, Jay M.
The cosmos
digitalisiert durch:
IDS Basel Bern
4.2a Eerie Lunar Eclipses 81
4.2b Glorious Solar Eclipses 82
 A Closer Look 4.1 Colors in the Sky 83
4.3 Twinkle, Twinkle, Little Star ... 87
4.4 The Concept of Apparent Magnitude 87
 Figure It Out 4.1 Using the Magnitude Scale 88
4.5 Rising and Setting Stars 88
 A Closer Look 4.2 Photographing the Stars 89
 Figure It Out 4.2 Sidereal Time 90
4.6 Celestial Coordinates to Label the Sky 91
4.7 The Reason for the Seasons 92
 Star Party 4.2 The Paths of the Moon and Planets 95
4.8 Time and the International Date Line 95
4.9 Calendars 98
4.10 Keeping Time 100

5. Gravitation and Motion: The Early History of Astronomy 107
 5.1 A Brief Survey of the Solar System 107
 Star Party 5.1 Prograde and Retrograde Motions 108
 5.2 The Earth-Centered Astronomy of Ancient Greece 109
 A Closer Look 5.1 Ptolemaic Terms 110
 A Closer Look 5.2 The Antikythera Mechanism 111
 5.3 A Heretical Idea: The Sun-Centered Universe 111
 Lives in Science 5.1 Copernicus 113
 5.4 The Keen Eyes of Tycho Brahe 114
 5.5 Johannes Kepler and His Laws of Orbits 114
 5.5a Kepler’s First Law 114
 5.5b Kepler’s Second Law 114
 Lives in Science 5.2 Tycho Brahe 115
 A Closer Look 5.3 Kepler’s Laws 116
 Lives in Science 5.3 Johannes Kepler 117

The James Webb Space Telescope being tested.
OBSERVAT. SIDEREAE

Sum daturam. Depressiores infus et in Luna cernuntur magne maculis; quae clariores plaga, in ilia enim crescente, quam decrescente, semper in lucis tenebrarumque aspectum, prominebant hincindicet circa ipsas magnas maculas cetera parte lucidioris, et ut in describendis figuris etiam sequente, neque depressiores tantummodo sunt dicta macularum termini, sed aquilatores, nec rugios, aut alpetriatibus interruptis.

Lucidi vero pars maximae propius maculas ement, adeo ut ante quadraturam primam, & in ipsa seconunda circa macula quandam, superiorum, borealium nempe Lunae plagam occupantem valde atollantur tam supra illam, quam infra ingentes quaem eminentia, veluti apertum praefecerunt delineationes.

A double page from Galileo's *Sidereus Nuncius* (1610) showing his engravings of the face of the Moon as seen through his newfangled telescope.

6. The Terrestrial Planets: Earth, Moon, and Their Relatives 133

6.1 Earth: There's No Place Like Home 134
 A Closer Look 6.1 Comparative Data for the Terrestrial Planets and Their Moons 134

6.1a Earth's Interior 134
 A Closer Look 6.2 Density 136

6.1b Continental Drift 138

6.1c Tides 139

6.1d Earth's Atmosphere 139

6.1e The Van Allen Belts 143

6.2 The Moon 144

6.2a The Moon's Appearance 145
A Closer Look 6.3 The First People on the Moon 145
6.2b The Lunar Surface 146
6.2c The Lunar Interior 151
6.2d The Origin of the Moon 152
6.2e Rocks from the Moon 153
6.3 Mercury 153
6.3a The Rotation of Mercury 154
6.3b Mercury’s History 155
6.3c Mercury Observed from Earth 155
 A Closer Look 6.4 Naming the Features of Mercury 156
6.3d Spacecraft Views of Mercury 156
6.3e Mercury Research Rejuvenated 158
6.3f Mercury from MESSENGER 158
6.3g Continuing Exploration of Mercury 160
6.4 Venus 160
6.4a Transits of Venus 161
6.4b The Atmosphere of Venus 162
6.4c The Rotation of Venus 162
6.4d Why Is Venus So Incredibly Hot? 162
6.4e Spacecraft Observations of Venus’s Atmosphere 164
6.4f Radar Observations of Venus’s Surface 165
6.4g Venus Exploration in the Twenty-First Century 166
6.5 Mars 168
6.5a Characteristics of Mars 169
6.5b Mars’s Surface 169
6.5c Mars’s Atmosphere 172

Mae Jemison and Sally Ride, NASA astronauts, in a 2017 LEGO™ set, in front of a Space Shuttle.

NASA’s Cassini mission farewell image of Saturn and its rings. The image is the last full mosaic taken two days before the spacecraft plunged into Saturn.
7. The Jovian Planets: Windswept Giants 189

7.1 Jupiter 190
 A Closer Look 7.1 Comparative Data for the Major Worlds 190
 Star Party 7.1 Observing the Giant Planets 191
 7.1a Spacecraft to Jupiter 191
 Figure It Out 7.1 The Size of Jupiter 192
 7.1b The Great Red Spot 192
 7.1c Jupiter’s Atmosphere 193
 7.1d Jupiter’s Interior 194
 7.1e Jupiter’s Magnetic Field 194
 7.1f Jupiter’s Ring 195
 7.1g Jupiter’s Amazing Satellites 195
 A Closer Look 7.2 Jupiter and Its Satellites in Mythology 200
 7.1h JUICE at Jupiter 201

7.2 Saturn 201
 7.2a Saturn’s Rings 201
 7.2b Saturn’s Atmosphere 204
 7.2c Saturn’s Interior and Magnetic Field 204
 7.2d Saturn’s Moon Titan 204
 A Closer Look 7.3 Saturn’s Satellites in Mythology 207
 7.2e Saturn’s Other Satellites 207
 A Closer Look 7.4 Saturn’s Rings and Moons from Cassini 208

7.3 Uranus 209
 A Closer Look 7.5 Uranus and Neptune in Mythology 210
 7.3a Uranus’s Atmosphere 210
 7.3b Uranus’s Rings 211
 7.3c Uranus’s Interior and Magnetic Field 212

7.4 Neptune 212
 7.4a Neptune’s Atmosphere 213
 7.4b Neptune’s Interior and Magnetic Field 215
 7.4c Neptune’s Rings 216
 A Closer Look 7.6 Naming the Rings of Neptune 216
 7.4d Neptune’s Moon Triton 217

7.5 The Formation of the Giant Planets 218

8. Pluto, Comets, Asteroids, and Beyond 225

8.1 Pluto 226
 8.1a Pluto’s Mass and Size 226
 8.1b Pluto’s Atmosphere 228
 8.1c What Is Pluto? 228
 A Closer Look 8.1 Dwarf Planets 230
 8.1d The Pluto System from New Horizons 230
 8.1e Beyond Pluto 230

8.2 Kuiper-Belt Objects and Dwarf Planets 232

8.3 Comets 235
 8.3a The Composition of Comets 235
 8.3b The Origin and Evolution of Comets 236
 8.3c Halley’s Comet 237
 8.3d Comet Shoemaker–Levy 9 239
 8.3e Some Bright Comets 241
A white-dwarf star, Stein 2051 B, only 17 light-years from Earth, seen with the Hubble Space Telescope, with a more distant star appearing below it. The white dwarf passed in front of the other star, providing a successful test of Einstein's general theory of relativity.

8.3f Spacecraft to Comets 243
8.3g Rosetta Orbits Its Comet 244
8.4 Meteoroids 244
8.4a Types and Sizes of Meteorites 244
8.4b Meteor Showers 247
A Closer Look 8.2 Meteor Showers 248
Star Party 8.1 Observing a Meteor Shower 248
8.5 Asteroids 249
8.5a General Properties of Asteroids 249
A Closer Look 8.3 The Extinction of the Dinosaurs 249
8.5b Asteroids Viewed Close-Up 250
8.5c Near-Earth Objects 254
8.5d Interstellar Visitor 256
8.5e Future Asteroid Missions 256

9. Our Solar System and Others 263
9.1 The Formation of the Solar System 264
9.1a Collapse of a Cloud 264
9.1b Models of Planet Formation 265
9.2 Extrasolar Planets (Exoplanets) 266
9.2a Astrometric Method 267
9.2b Timing of Radio Pulsars 267
9.2c Periodic Doppler Shifts: The Doppler-Wobble Method 267
9.2d Transiting Planets: The Blink Method 269
9.2e Direct Imaging of Exoplanets 272
9.2f Gravitational Microlensing 275

10. Our Star: The Sun 289
10.1 What Is the Sun's Basic Structure? 290
10.1a The Photosphere 291
A Closer Look 10.1 The Most Common Elements in the Sun's Photosphere 292
10.1b The Chromosphere 294
10.1c The Corona 295
10.1d The Scientific Value of Eclipses 301
10.2 Sunspots and Other Solar Activity 302
10.2a What Are Those Blemishes on the Sun? 302
Star Party 10.1 Observing Sunspots 303
10.2b The Solar-Activity Cycle 303
10.2c Fireworks on the Sun, and Space Weather 304
10.2d Filaments and Prominences 307
10.2e Decades Ahead of Solar Monitoring 307
10.3 The Sun and the Theory of Relativity 307
Lives in Science 10.1 Albert Einstein 308

A multiwavelength view of Supernova 1987A, with green showing Hubble views of how the expanding shock wave from the star that exploded is colliding with material ejected previously, and the red showing dust imaged with the ALMA millimeter/submillimeter array. Blue is hot gas imaged with the Chandra X-ray Observatory.
11. Stars: Distant Suns 317
 11.1 Colors, Temperatures, and Spectra of Stars 318
 11.1a Taking a Star’s Temperature 318
 11.1b How Do We Classify Stars? 319
 11.1c The Coolest Stars 320
 11.2 How Distant Are the Stars? 320
 Figure It Out 11.1 Stellar Triangulation 323
 11.3 How Powerful Are the Stars? 323
 A Closer Look 11.1 Using Absolute Magnitudes 325
 11.4 Temperature–Luminosity Diagrams 325
 Figure It Out 11.2 The Inverse-Square Law 326
 11.5 How Do Stars Move? 328
 11.5a Proper Motions of Stars 328
 Figure It Out 11.3 A Star’s Luminosity 329
 11.5b Radial Velocities of Stars 329
 A Closer Look 11.2 Proxima Centauri: The Nearest Star Beyond the Sun 331
 11.6 “Social Stars”: Binaries 332
 Figure It Out 11.4 Doppler Shifts 333
 11.6a Pairs of Stars and Their Uses 333
 Figure It Out 11.5 Binary Stars 335
 11.6b How Do We Weigh Stars? 337
 11.6c The Mass–Luminosity Relation 337
 A Closer Look 11.3 A Sense of Mass: Weighing Stars 338
 Figure It Out 11.6 The Mass–Luminosity Relation 339
 11.7 Stars That Don’t Shine Steadily 339

11.8 Clusters of Stars 343
 11.8a Open and Globular Star Clusters 343
 A Closer Look 11.4 Star Clusters in Our Galaxy 344
 11.8b How Old Are Star Clusters? 345
 11.8c Gaia’s Hertzsprung–Russell Diagram 346
 A Closer Look 11.5 How We Measure Basic Stellar Parameters 348

12. How the Stars Shine: Cosmic Furnaces 357
 12.1 Star Birth 358
 12.1a Collapse of a Cloud 358
 12.1b The Birth Cries of Stars 362
 12.2 Where Stars Get Their Energy 364
 12.3 Atoms and Nuclei 365
 12.3a Subatomic Particles 365
 12.3b Isotopes 365
 Figure It Out 12.1 Energy Generation in the Sun 366
 12.3c Radioactivity and Neutrinos 367
 12.4 Stars Shining Brightly 367
 12.5 Why Stars Shine 368
 12.6 Brown Dwarfs 368
 12.7 The Solar Neutrino Experiment 370
 12.7a Initial Measurements 370
 12.7b Further Solar Neutrino Experiments 371
 12.7c Beyond Solar Neutrinos 372
 12.8 The End States of Stars 374

Star cluster R136 in the Tarantula Nebula in the Large Magellanic Cloud, imaged with Hubble.

The Bubble Nebula, NGC 7635, gas expanding around a massive star. The object is 7 light-years across, and is imaged here with Hubble.
A pair of spiral galaxies, NGC 4302 and 4298, both about 55 million light-years away and imaged with the Hubble Space Telescope.

13. The Death of Stars: Recycling 381
13.1 The Death of the Sun 381
13.1a Red Giants 381
13.1b Planetary Nebulae 383
13.1c White Dwarfs 384
13.1d Summary of the Sun’s Evolution 386
13.1e Binary Stars and Novae 387
13.2 Supernovae: Stellar Fireworks! 388
13.2a Core-Collapse Supernovae 389
13.2b White-Dwarf Supernovae (Type Ia) 391
13.2c Superluminous Supernovae 393
13.2d Observing Supernovae 393
13.2e Supernova Remnants 393
 A Closer Look 13.1 Searching for Supernovae 395
13.2f Supernovae and Us 396
13.2g Supernova 1987A! 397
13.2h Cosmic Rays 401
13.3 Pulsars: Stellar Beacons 402
13.3a Neutron Stars 402
13.3b The Discovery of Pulsars 402
13.3c What Are Pulsars? 403
13.3d The Crab, Pulsars, and Supernovae 404
13.3e Slowing Pulsars and Fast Pulsars 406
13.3f Binary Pulsars and Gravitational Waves 406
13.3g A Pulsar with a Planet 408
13.3h X-ray Binaries 408

14. Black Holes: The End of Space and Time 415
14.1 The Formation of a Stellar-Mass Black Hole 416
14.2 The Photon Sphere 416
14.3 The Event Horizon 417
 14.3a A Newtonian Argument 417
 14.3b Black Holes in General Relativity 418
14.4 Time Dilation 419
14.5 Properties of Black Holes 419
 14.5a Rotating Black Holes 419
 14.5b Measuring Black-Hole Spin 420
14.6 Passageways to Distant Lands? 422
14.7 Detecting a Black Hole 422
 14.7a Hot Accretion Disks 422
 14.7b Cygnus X-1: The First Plausible Stellar-Mass Black Hole 423
 14.7c Other Black-Hole Candidates 424
 Figure It Out 14.1 Binary Stars and Kepler’s Third Law 424

A cluster of galaxies 10 billion light-years from Earth, with 500 trillion times the mass of our Sun. Hot gas in the middle, imaged with the Chandra X-ray Observatory, shows as blue-white overlaying Hubble’s visible-light image in green and the Spitzer Space Telescope’s image in red.
An all-sky map made with the European Space Agency's Planck spacecraft, which was also used to map the cosmic background radiation. The image is a composite of magnetic-field, atomic "free-free," dust, and carbon-monoxide components.

14.7d The Strange Case of SS433 425
14.8 Supermassive Black Holes 426
14.9 Moderation in All Things 428
14.10 Gamma-ray Bursts: Birth Cries of Black Holes? 430
14.10a How Far Away Are Gamma-ray Bursts? 430
14.10b Models of Gamma-ray Bursts 431
14.11 Mini Black Holes 433
14.12 The Detection of Gravitational Waves 433
Proposal: The Maxwell–Einstein speed 440

16. A Universe of Galaxies 479
16.1 The Discovery of Galaxies 480
16.1a The Shapley–Curtis Debate 480
16.1b Galaxies: "Island Universes" 482
16.2 Types of Galaxies 483
16.2a Spiral Galaxies 483
16.2b Elliptical Galaxies 485
16.2c Other Galaxy Types 486
16.3 Habitats of Galaxies 488
16.3a Clusters of Galaxies 488
Star Party 16.1 Observing Galaxies 488
16.3b Superclusters of Galaxies 491
16.4 The Dark Side of Matter 491
16.4a The Rotation Curve of the Milky Way Galaxy 491
16.4b Dark Matter Everywhere 493
Figure It Out 16.1 Calculating the Mass from the Rotation Curve 494
16.4c What Is Dark Matter? 495
16.5 Gravitational Lensing 497
16.6 The Birth and Life of Galaxies 503
16.7 The Expanding Universe 503
Figure It Out 16.2 Redshifts and the Hubble–Lemaître Law 505
Figure It Out 16.3 Using the Hubble–Lemaître Law to Determine Distances 506
A gravitationally lensed embryonic galaxy, only half a billion years after the big bang. It is only 1% the mass of our Milky Way Galaxy, and is revealing an early stage of galaxy formation. The lensing smeared it into an arc; other galaxies about that far away and far back in time appear only as reddish dots. The image was taken with the Hubble Space Telescope.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.8</td>
<td>The Search for the Most Distant Galaxies</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 16.4 Relativistic Effects</td>
<td>508</td>
</tr>
<tr>
<td>16.9</td>
<td>The Evolution of Galaxies</td>
<td>511</td>
</tr>
<tr>
<td>16.10</td>
<td>Evolution of Large-Scale Structure</td>
<td>514</td>
</tr>
<tr>
<td>17.2</td>
<td>Quasars: Denizens of the Distant Past</td>
<td>526</td>
</tr>
<tr>
<td>17.2a</td>
<td>The Discovery of Quasars</td>
<td>526</td>
</tr>
<tr>
<td>17.2b</td>
<td>Puzzling Spectra</td>
<td>527</td>
</tr>
<tr>
<td>17.2c</td>
<td>The Nature of the Redshift</td>
<td>528</td>
</tr>
<tr>
<td>17.3</td>
<td>How Are Quasars Powered?</td>
<td>529</td>
</tr>
<tr>
<td>17.3a</td>
<td>A Big Punch from a Tiny Volume</td>
<td>531</td>
</tr>
<tr>
<td>17.3b</td>
<td>What Is the Energy Source?</td>
<td>531</td>
</tr>
<tr>
<td>17.3c</td>
<td>Accretion Disks and Jets</td>
<td>532</td>
</tr>
<tr>
<td>17.4</td>
<td>What Are Quasars?</td>
<td>533</td>
</tr>
<tr>
<td>17.5</td>
<td>Are We Being Fooled?</td>
<td>536</td>
</tr>
<tr>
<td>17.6</td>
<td>Finding Supermassive Black Holes</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 17.1 The Central Mass in a Galaxy</td>
<td>538</td>
</tr>
<tr>
<td>17.7</td>
<td>The Effects of Beaming</td>
<td>540</td>
</tr>
<tr>
<td>17.8</td>
<td>Probes of the Universe</td>
<td>543</td>
</tr>
<tr>
<td>18.2a</td>
<td>The Hubble-Lemaître Law</td>
<td>555</td>
</tr>
<tr>
<td>18.2b</td>
<td>Expansion Without a Center</td>
<td>556</td>
</tr>
<tr>
<td>18.2c</td>
<td>What Is Actually Expanding?</td>
<td>558</td>
</tr>
<tr>
<td>18.3</td>
<td>The Age of the Universe</td>
<td>559</td>
</tr>
<tr>
<td>18.3a</td>
<td>Finding Out How Old</td>
<td>559</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 18.1 The Hubble Time</td>
<td>560</td>
</tr>
<tr>
<td>18.3b</td>
<td>The Quest for Hubble's Constant</td>
<td>560</td>
</tr>
<tr>
<td>18.3c</td>
<td>A Key Project of the Hubble Space Telescope</td>
<td>562</td>
</tr>
<tr>
<td>18.3d</td>
<td>Deviations from Uniform Expansion</td>
<td>566</td>
</tr>
<tr>
<td>18.3e</td>
<td>Type Ia Supernovae as Cosmological Yardsticks</td>
<td>566</td>
</tr>
<tr>
<td>18.4</td>
<td>The Geometry and Fate of the Universe</td>
<td>567</td>
</tr>
<tr>
<td>18.4a</td>
<td>The Cosmological Principle: Uniformity</td>
<td>567</td>
</tr>
<tr>
<td>18.4b</td>
<td>No "Cosmological Constant"?</td>
<td>567</td>
</tr>
<tr>
<td>18.4c</td>
<td>Three Kinds of Possible Universes</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>Figure It Out 18.2 The Critical Density and Ω_M</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>A Closer Look 18.1 Finite Flat and Hyperbolic Universes</td>
<td>571</td>
</tr>
<tr>
<td>18.4d</td>
<td>Two-Dimensional Analogues</td>
<td>572</td>
</tr>
<tr>
<td>18.4e</td>
<td>What Kind of Universe Do We Live In?</td>
<td>573</td>
</tr>
<tr>
<td>18.4f</td>
<td>Obstacles Along the Way</td>
<td>574</td>
</tr>
<tr>
<td>18.5</td>
<td>Measuring the Expected Deceleration</td>
<td>574</td>
</tr>
<tr>
<td>18.5a</td>
<td>The High-Redshift Hubble Diagram</td>
<td>574</td>
</tr>
</tbody>
</table>
Detailed Contents

18.5 Type la (White-Dwarf) Supernovae 575

18.5b An Accelerating Universe! 575
18.5c Einstein's Biggest Blunder? 577
18.5d Dark Energy 578
18.5f The Cosmic Jerk 579
18.6 The Future of the Universe 581

19. In the Beginning 589

19.1 The Steady-State Theory 590
19.2 The Cosmic Microwave Background Radiation 591
19.2a A Faint Hiss from All Directions 591
19.2b Origin of the Microwave Radiation 592
19.3 Deviations from Isotropy 594
19.3a Ripples in the Cosmic Microwave Background 594
19.3b The Overall Geometry of the Universe 595
19.3c The Wilkinson Microwave Anisotropy Probe (WMAP) 596
19.3d The Planck Spacecraft 596
19.3e Evaluating the Cosmic Background Radiation 596
19.3f Planck Maps Objects in Space 599
19.4 The Early Universe 600
19.4a Going Back in Time 600
19.4b A Brief History of the Early Universe 602
19.4c Primordial Nucleosynthesis 604
19.5 The Inflationary Universe 606
19.5a Problems with the Original Big-Bang Model 606
19.5b Inflation to the Rescue 607
19.5c Forces in the Universe 609
19.5d Supercooling the Universe 612
19.5e Successes of Inflation 612
19.5f The Ultimate Free Lunch? 613
19.6 A Universe of Universes 614
19.7 A Universe Finely Tuned for Life? 616

20. Life in the Universe 623

20.1 The Origin of Life 624
20.2 Life in the Solar System 626
20.3 Suitable Stars for Intelligent Life 626
20.4 The Search for Extraterrestrial Intelligence 627
20.5 Communicating with Extraterrestrials 632
20.6 The Statistics of Intelligent Extraterrestrial Life 633
20.6a The Drake Equation 633
20.6b Where Is Everyone? 635
20.7 UFOs and the Scientific Method 637
20.7a UFOs 637
20.7b Of Truth and Theories 639
20.8 Conclusion 639

Epilogue 644

Appendix 1/2. Measurement Systems/Basic Constants 645
Appendix 3. Planets and Dwarf Planets 647
Appendix 4. The Brightest Stars 649
Appendix 5. The Nearest Stars 651
Appendix 6. The Messier Catalogue 654
Appendix 7. The Constellations 656
Appendix 8. Star Names 658

Selected reading 661
Glossary 668
Index 685