Contents

Preface			xυ
Chapter 1	1 I	Introduction1.1The Need for Sensors in Modern Weapon Systems1.2Increasing Weapon System Effectiveness With Sensors1.3Precision Guided Munitions1.4Mission-Based Weapon Selection1.5Book ContentsReferences	1 2 6 9 11 14
Chapter 2	21	Multiple-Sensor System Benefits, Architectures, and Compo-	15
	ม ด 1	nent Properties	15
	2.1	magnetic Spectrum	10
		2.1.1 Frequency and Wavelength Operating Bands Versus Applications	18
		2.1.2 Monostatic and Bistatic Radar Operation	19
		2.1.3 Signature-Generation Phenomena	19
		2.1.4 Multiple Sensor System Applications for Military and Civilian Use	20
	2.2	Sensor and Data Fusion Configurations	23
		2.2.1 Central-Level Fusion	23
		2.2.2 Sensor-Level Fusion	25
		2.2.3 Hybrid Fusion	26
		2.2.4 Pixel-, Feature-, and Decision-Level Fusion	27
		2.2.5 Sensor-Level Fusion for Automatic Target Recogni-	28
	9	tion Repetite of Multimode, Multispectral Sensor Systems	90
	4.3 9 A	Resolution Versus Wavelength	49 33
•	4.4 9 K	Effects of Operating Frequency on Availability and Perfor-	33
	4.0	mance of MMW Sensor Hardware Components	55
	26	IR Thermal and Quantum Detectors	39
	 ~	2.6.1 Detector Detectivity	44

		2.6.2 Detector Material Trade for Dual Band Focal Plane Arrays	48
		2.6.3 Quantum Detectors Used in Defense Applications	49
		2.6.4 Limits on IR Sensor Design and Performance	50
	2.7	Strengths and Weaknesses of Passive and Active Electromag-	52
		netic Sensors Used for Object Discrimination and Tracking	01
	2.8	Summary	59
		References	54
			51
Chapter	3	Effects of the Atmosphere and Obscurants on Millimeter-Wave	57
	21	Influence of Weyelength on Atmospheric Attenuation	57
	9.1 9.0	Absorption and Attenuation of MMW Enguns by Ature	57
	5.4	absorption and Attenuation of MMW Energy by Atmo-	59
		3.9.1 Attenuation by Snow	60
		3.2.1 Alternation by Show	60
		3.9.3 Attenuation by Smoke and Dust	69
	22	Backscatter of MMW Energy by Dain	64
	9.5	Absorption and Southering of IP. Encurre he Atmospheric	04 66
	5.4	Constituents	00
		3.4.1 Attenuation by Rain	71
		3.4.2 Transmittance Through Snow	71
		3.4.3 Extinction Coefficients for Natural and Man-made	75
		Obscurants	
	3.5	EOSAEL Sensor Performance Model	76
	3.6	Summary	79
		References	79
			.5

Chapter	4	Millimeter-Wave Radar Sensors	83
-	4.1	Radar Configurations	84
	4.2	Mixer Operation	85
	4.3	Noise Figure and Receiver Sidebands	87
	4.4	Pulse Radar	91
	4.5	FMCW Radar	94
	4.6	CW Doppler Radar	97
	4.7	Pulse Doppler Radar	99
		4.7.1 Pulse Repetition Frequency	99
		4.7.2 Resolving Ambiguities With a Medium PRF Waveform	101
	4.8	Synthetic Aperture Radar	103
		4.8.1 Focused and Unfocused SAR Operation	105
		4.8.2 Spotlight-Mode Operation	108

4.9	Optimizing Radar Target Detection in Ground Clutter	109
	4.9.1 False Alarm Probability	110
	4.9.2 Target Fluctuation Models	111
	4.9.3 Target Detection in Non-Rayleigh Clutter	113
	4.9.4 Square Law Detector Performance	114
	4.9.5 Binary Integrator and Log Envelope Detector Per- formance	116
	4.9.6 Adaptive Log-t Detector Performance	118
4.10	Increasing Detection Probability With Multiple Independent	120
	Samples	
	4.10.1 Video Integration of Samples	120
	4.10.2 Cumulative Detection	122
4.11	Radar Angle-Tracking Error	122
4.12	Target Resolution	124
4.13	High-Clutter Backgrounds	127
	4.13.1 Deciduous Trees	128
	4.13.2 Radar Backscatter Coefficient Data Set Inconsis-	131
	4 13 3 Snow	189
4 1 4	Backscatter From Targets	132
4 15	Signal-Processing Techniques for Target Detection and	128
7.15	Classification	130
	4 15 1 Peak and Pulse Width Time-Domain Algorithms	188
	4 15 9 Median Filter	120
	4.15.3 Feature-Based Inference for Target Classification	130
	4.15.4 Spectral Feature Extraction	145
1 16	Summery	151
4.10	Deferences	151
	NEICICIUCS	199

Chapter 5 F	Processing of Intermediate Frequency Data in an FMCW Radar	157
5.1	Range Resolution	157
5.2	Radar Range Equation	160
5.3	Range to Background	162
5.4	Diversity Gain and Integration Gain	164
	5.4.1 Ranging Using Ground Clutter	164
	5.4.2 Target Detection in Clutter	167
5.5	Temporal and Frequency Decorrelation	168
	5.5.1 Doppler-Induced Signal Fading	169
	5.5.2 Doppler Beam Sharpening	176
	5.5.3 Temporal Decorrelation via Scanning	177
	5.5.4 Temporal Decorrelation via Clutter and Target	177
	Movement	
	5.5.5 Frequency Decorrelation	180

		5.5.6 Combining Samples From Both Temporal and Fre-	186
	56	Range to Target	188
	57	Height Profile Operation	188
	5.8	Scene Modeling	190
	59	Summary	199
	5.5	References	193
Chapter	6 P	assive Millimeter-Wave Sensors	195
-	6.1	Planck Radiation Law	196
	6.2	Radiative Transfer Theory	198
		6.2.1 Temperature Designations	201
		6.2.2 Impedance-Mismatch Effects	206
		6.2.3 Significance of System Input Noise Temperature	209
	6.3	Total Power Radiometer	209
	6.4	Dicke Radiometer	210
	6.5	Noise Injection Radiometer	211
	6.6	Radiometer Signal-to-Noise and Signal-to-Clutter Ratio	212
		6.6.1 Brightness Temperature Contrast	214
		6.6.2 Antenna Beamfill Factor	215
		6.6.3 Minimum Detectable Temperature	218
		6.6.4 Signal-to-Noise Plus Clutter Ratio Calculation	222
	6.7	Angle-Tracking Error	222
	6.8	Background-Clutter Signatures	223
		6.8.1 Water Signature	225
		6.8.2 Boulder, Gravel, Ground, and Vegetation Signatures	228
		6.8.3 Snow Signature	229
		6.8.4 Summary of Effects of Snow Wetness, Incidence Angle, and Frequency on the Active and Passive Signa- tures of Snow	234
	6.9	Target Detection in Nonmetamorphic and Metamorphic	234
	6 10	Summary	935
	0.10	References	238
Chapter	7 P	assive Infrared Sensors	241
•	7.1	Passive Infrared Sensor Design Issues	242
	7.2	Scene-Imaging Techniques	244
	7.3	Object Discrimination Levels	245
	7.4	Energy Emission by Blackbody Objects in the Infrared	251
	75	Measures of Performance	254
		7.5.1 Image Signal-to-Noise Ratio	254
		7.5.2 Video Signal-to-Noise Ratio	254

		7.5.3 Noise-Equivalent Temperature Difference	256
		7.5.4 Auxiliary Relationships for Noise-Equivalent Temper-	257
		ature Difference	
		7.5.5 Application of S/N and $NE\Delta T$ to IR Sensor Design	257
		7.5.6 Radiation Contrast	259
		7.5.7 Minimum Resolvable Temperature Difference	259
		7.5.8 Minimum Detectable Temperature Difference	269
	7.6	Target Classification Models	271
		7.6.1 One-Dimensional Array FLIR Sensor Performance	271
		Model	
		7.6.2 Two-Dimensional Array FLIR Sensor Performance	273
		Model	
		7.6.3 Common Module FLIR Sensor	274
		7.6.4 Application of CNVEO Model to First-Generation	276
		FLIR Sensor Design	
	7.7	Sampling Frequency Selection	280
		7.7.1 Dwell Time	281
		7.7.2 Effect of Number of Samples per Dwell Time on	283
		Image Quality	
		7.7.3 Effect of Array Configuration on Maximum Fre-	283
		quency Response of MTF	
	7.8	Direct Detection of Photon Energy	284
		7.8.1 Signal Photon-Limited Detection	286
		7.8.2 Background-Limited Detection	287
		7.8.3 Detection and False Alarm Probability	289
	7.9	Heterodyne Detection of Photon Energy	293
	7.10	Detection of Photon Energy in Quantum Noise	294
	7.11	Signal Processing of Multipixel Imagery for Automatic Target	295
	- 10	Recognition	224
	7.12	Summary	294
		References	300
	0 T		0.00
Chapter	8 L	aser Kadar	303
	8.1	Target Designation and Ranging	304
	8.2	Solid State Lasers	305
	8.3	Laser Kadar Imagery	308
		8.3.1 Solid State Laser Radar Imagery	309
		8.3.2 Carbon Dioxide Laser Radar Imagery	319
	04	0.3.3 Speckle	321
	0.4	Laser Radar Range Equation	32Z
		0.4.1 INCAL-FICIU NAUAI NAUGE EQUALION	020 995
		0.4.2 Laser Radar Range Equation for a Resolved Target	3Z3
		0.4.5 Laser Kauai Kange Equation for an Unresolved	327
		Target	

		8.4.4 Laser Radar Range Equation for Power Backscattered	328
	05	Effective Reder Cross Section of Laser Terrets	290
	0.0	Noise Sources in Lager Padare	329
	0.0	8.6.1 Signal To Noise Patio for Direct Detection Laser	221
		8.0.1 Signal-10-Noise Kallo for Direct Detection Laser Radar Sensors	551
		8.6.9 Signal-to-Noise Ratio for Heterodyne Detection Laser	339
		Radar Sensors	554
	87	Laser Radar Target Fluctuation Characteristics	333
	8.8	Detection Probability Calculation for Laser Radar Sensors	333
	89	Comparison of Millimeter-Wave and Infrared Signal Detec-	335
	0.0	tion Theory	000
	8 10	Summary	336
	0.10	References	337
Chapter	9 V	Vindows and Domes for Dual-Wavelength MMW and IR	339
5	S	ensors	
	9.1	General Requirements for a Dual-Wavelength Sensor	340
		Window	
	9.2	Dielectric Theory	341
	9.3	Window and Radome Wall Configurations	345
		9.3.1 Monolithic Walls	345
		9.3.2 Layered Walls	346
	9.4	Physical Properties of Window Materials	346
		9.4.1 Heat	348
		9.4.2 Thermal Shock	350
		9.4.3 Moisture	351
		9.4.4 Absorption Coefficient Model for Far Infrared Wave-	351
		lengths Approaching the MMW Spectrum	
		9.4.5 Dielectric Properties	353
		9.4.6 Rain Erosion	356
	9.5	Summary	359
		References	360
<u> </u>	10.3		969
Chapter	10 N	Aillimeter-Wave/Infrared Dual-Sensor Design	303
	10.1	Mission Scenario	303 964
	10.2	Dual-Sensor Configuration	204 266
	10.3	MMW Antenna and Receiver Concept	200 279
	10.4	Seeker Scan Kate and Acceleration	374 975
	10.5	MINIW Sensor Design and Performance Calculations	313 976
		10.5.1 Integration Time	310 976
		10.5.2 Faise Alarm Probability	370 970
		10.5.3 Kaw Signal-to-Clutter Katio	318
		10.5.4 Effective Signal-to-Clutter Ratio	380

	10.5.5 Detection Probability Summary for Nominal and Sup-	382
	pressed Targets in Nominal Background Clutter and	
	High Background Clutter (Snow)	
	10.5.6 Raw Signal-to-Noise Ratio	384
	10.5.7 Effective Signal-to-Noise Ratio	386
	10.5.8 Noise-Limited Angle-Tracking Error	389
10.6	IR Sensor Design and Performance Calculations	390
	10.6.1 Instantaneous Field of View	390
	10.6.2 Spatial Frequency	391
	10.6.3 Number of Detectors	392
	10.6.4 Array Configuration and Sample Frequency	394
	10.6.5 Noise-Equivalent Temperature Difference	395
	10.6.6 Minimum Resolvable Temperature Difference	396
	10.6.7 Detection Probability	397
10.7	Summary	397
	References	399
List of Symbo	ls, Abbreviations, and Acronyms	401
About the Au	thor	413
Index		415