Contents

Cor	Contributors	
Preface		xi
1.	Protein intrinsic disorder and structure-function continuum Vladimir N. Uversky	1
	1. Introduction	2
	 Locks, keys, and protein functionality Intrinsic disorder, multifunctionality, and "moonlighting" vs. structure- 	3
	function paradigm	4
	4. Proteoforms against "one gene-one enzyme" hypothesis	5
	5. Intrinsic disorder and proteoforms	6
	6. Proteoforms and structural flexibility of ordered proteins	9
	7. Proteoforms and protein-structure continuum	10
	References	11
2.	Intrinsic disorder associated with 14-3-3 proteins and their	
	partners	19
	Nikolai N. Sluchanko and Diego M. Bustos	
	1. Introduction	20
	2. Role of protein modules, intrinsic disorder, and posttranslational	
	modifications in protein-protein recognition	21
	3. 14-3-3 Protein hubs: General aspects	25
	4. Structural features and intrinsic disorder associated with 14-3-3 proteins	27
	5. Multifunctionality of 14-3-3 proteins	33
	6. Intrinsic disorder and the 14-3-3 interactome	36
	7. Protein-protein interaction subnetworks of 14-3-3 paralogs	42
	8. The mechanism of binding of intrinsically disordered target proteins to	
	14-3-3	43
	9. Conclusions and perspectives	48
	Acknowledgments	49
	References	49
3.	Intrinsically disordered proteins and phenotypic switching:	
	Implications in cancer	63
	Vivek Kulkarni and Prakash Kulkarni	
	1. Introduction	64
	2. Conformational noise hypothesis: The MRK model	65

	3. Evidence supporting the MRK hypothesis	68
	4. Learning and evolution	71
	5. Inheritance of acquired learning	72
	6. Therapeutic implications	75
	7. Conclusions	76
	References	76
	Further reading	84
4.	Translational diffusion of unfolded and intrinsically disordered proteins	85
		05
	Irina V. Nesmelova, Daria L. Melnikova, Venkatesh Ranjan,	
	and Vladimir D. Skirda	
	1. Introduction	86
	2. Dilute solutions	87
	3. Concentrated solutions	95
	4. Conclusions and future directions	101
	References	102
5.	Intrinsically disordered proteins in the formation of functional	
	amyloids from bacteria to humans	109
	Anamika Avni, Hema M. Swasthi, Anupa Majumdar,	
	and Samrat Mukhopadhyay	
	1. An introduction to intrinsically disordered proteins	110
	2. Mechanism of protein aggregation and amyloid formation	112
	3. Supramolecular architecture of amyloids	114
	4. Amyloids as functional workhorses	116
	5. Bacterial functional amyloids	117
	6. Functional amyloids in yeast	122
	7. Functional amyloids in long-term memory in Aplysia and Drosophila	125
	8. Amyloid fibers in spider silk	126
	9. Functional amyloids in vertebrates and higher organisms	126
	10. Functional amyloids in mammals and humans	127
	11. Functional amyloids in the plant kingdom	133
	12. Conclusions and future directions	133
	Acknowledgments	134
	References	134

6.	Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer's and Parkinson's diseases	145
	Orkid Coskuner and Vladimir N. Uversky	
	1. Introduction	146
	2. A brief summary of techniques currently used for <i>in vivo</i> , <i>in vitro</i> , and <i>in silico</i> AD and PD analysis	164
	3. Some insights from computational biology and computational chemistry	174
	4. Disorder and aggregation propensity analysis using bioinformatics	208
	5. Conclusion	212
	References	212
7.	Shear-induced amyloid formation of IDPs in the brain	225
	Conrad N. Trumbore	
	1. Introduction	227
	2. What is liquid shear?	229
	3. A β shear within the brain?	235
	4. Previous, current, and future research in sheared A β and amyloid monomers	238
	5. General properties of IDPs and their application to $A\beta$	241
	6. The free energy folding $A\beta$ landscape	245
	7. A β aggregation, oligomer structures, and drug intervention	247
	8. Brain environmental effects: A β flow paths and possible shear events	248
	9. The role of shear energy: What does $A\beta^*$ really mean?	266
	10. Mechanisms for $A\beta$ aggregation: Thermal vs. shear activation	272
	11. Proposed Alzheimer's disease model with shear included	273
	12. In vivo and in vitro experiments	286
	13. Other amyloid diseases and participants in AD	293
	14. The shear extremes: Concussion and traumatic brain injury	293
	 Extrapolations to non-amyloid diseases? Constructions 	294 294
	16. Conclusions	294
	17. Suggested future directions in shear research	305
	Acknowledgments References	306
	herences	500
8.	Role of intrinsic disorder in muscle sarcomeres	311
	Dmitri Tolkatchev, Garry E. Smith Jr., and Alla S. Kostyukova	
	1. Introduction	312
	2. Myosin-binding protein C (MyBP-C)	313

Contents

	 Proteins of tropomodulin family Concluding remarks Acknowledgment References 	321 334 335 335
9.	Computational prediction of functions of intrinsically disordered regions Akila Katuwawala, Sina Ghadermarzi, and Lukasz Kurgan	341
		2.40
	1. Introduction	342
	2. Functional annotations of intrinsically disordered regions	343
	 Prediction of functions of intrinsically disordered regions Case studies 	348 357
		360
	5. Summary and prospective advances Acknowledgment	362
	References	362
		502
1 0 .	The dark proteome of cancer: Intrinsic disorderedness	
	and functionality of HIF-1 α along with its interacting proteins	371
	Neha Garg, Prateek Kumar, Kundlik Gadhave, and Rajanish Giri	
	1. Introduction	373
	2. Methods	375
	3. Results	376
	4. Discussion	395
	Author contributions	398
	Competing interests	398
	References	398
Inde	x	405