Contents

Part I Stochastic Epidemics in a Homogeneous Community Tom Britton and Etienne Pardoux

Int	roduct	ion	3			
1	Stochastic Epidemic Models					
	1.1	The Stochastic SEIR Epidemic Model in a Closed Homogeneous				
		Community	5			
		1.1.1 Model Definition	5			
		1.1.2 Some Remarks, Submodels and Model Generalizations	6			
		1.1.3 Two Key Quantities: R_0 and the Escape Probability	8			
	1.2	The Early Stage of an Outbreak	9			
	1.3	The Final Size of the Epidemic in Case of No Major Outbreak	14			
	1.4	Vaccination	17			
2	Mar	kov Models	21			
	2.1	The Deterministic SEIR Epidemic Model	21			
	2.2	Law of Large Numbers	25			
	2.3	Central Limit Theorem	34			
	2.4	Diffusion Approximation 4				
3	Gene	General Closed Models				
	3.1	Exact Results for the Final Size in Small Communities	43			
	3.2	The Sellke Construction	47			
	3.3	LLN and CLT for the Final Size of the Epidemic	49			
		3.3.1 Law of Large Numbers	50			
		3.3.2 Central Limit Theorem	52			
	3.4	The Duration of the Stochastic SEIR Epidemic	54			
4	Оре	n Markov Models	59			
	4.1	Open Populations: Time to Extinction and Critical Population Size	59			
	4.2	Large Deviations and Extinction of an Endemic Disease	63			
		4.2.1 Introduction	63			

		4.2.2	The Rate Function	. 64
		4.2.3	The Lower Bound	. 68
		4.2.4	The Upper Bound	. 74
		4.2.5	Time of Extinction in the SIRS Model	. 82
		4.2.6	Time of Extinction in the SIS Model	. 92
		4.2.7	Time of Extinction in the SIR Model with Demography	. 93
Apj	oendix			. 97
	A.1	Branchi	ing Processes	. 97
		A.1. 1	Discrete Time Branching Processes	. 97
		A.1.2	Continuous Time Branching Processes	. 99
	A.2	The Poi	isson Process and Poisson Point Process	. 102
	A.3	3 Cramér's Theorem for Poisson Random Variables		
	A.4 Martingales			. 107
		A.4.1	Martingales in Discrete Time	. 107
		A.4.2	Martingales in Continuous Time	. 109
	A.5	Tightne	ess and Weak Convergence in Path Space	. 110
	A.6	Pontrva	agin's Maximum Principle	. 111
	A.7	Semi- a	and Equicontinuity	. 113
	A 8	Solution	ns to Selected Exercises	. 113
	11.0	borano		
Ref	erence	s for Par	rt I	. 119
Par	t II St	ochastic	SIR Epidemics in Structured Populations	
Par Fra	rt II St ink Ba	tochastic ll and Da	SIR Epidemics in Structured Populations avid Sirl	
Pai Fra	rt II St ink Bal	tochastic II and Da	SIR Epidemics in Structured Populations avid Sirl	100
Par Fra Int	rt II St ink Bal roduct	tochastic II and Da	SIR Epidemics in Structured Populations avid Sirl	. 123
Par Fra Int	t II St ink Bal roduct	iochastic II and Da	SIR Epidemics in Structured Populations avid Sirl	. 123
Par Fra Int 1	t II St ink Bal roduct Singl	ion	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics	. 123
Par Fra Int 1	t II St nk Bal roduct Singl	ion e Popula Standar	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics rd SIR Epidemic Model	. 123 . 125 . 126 . 126
Par Fra Int 1	rt II St nk Bal roduct Singl 1.1 1.2	ion e Popula Standar Randor	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics rd SIR Epidemic Model	. 123 . 125 . 126 . 126 . 128
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3	ion e Popula Standar Randor Symme	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics rd SIR Epidemic Model	. 123 . 125 . 126 . 126 . 128 . 130
Par Fra Int 1	t II St ink Bal roduct Singl 1.1 1.2 1.3 1.4	tochastic II and Da ion e Popula Standar Randor Symme Gontch	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics rd SIR Epidemic Model	. 123 . 125 . 126 . 126 . 128 . 130 132
Par Fra Int 1	t II Sink Bal roduct Singl 1.1 1.2 1.3 1.4 1.5	ion e Popula Standar Randor Symme Gontch Suscep	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures naroff Polynomials	. 123 . 125 . 126 . 126 . 128 . 130 . 132
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6	ion e Popula Standar Randor Symme Gontch Suscep Total S	SIR Epidemics in Structured Populations avid Sirl ntion Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures haroff Polynomials	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7	ion e Popula Standar Randor Symme Gontch Suscep Total S Total S	SIR Epidemics in Structured Populations avid Sirl ation Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures haroff Polynomials tibility Sets	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epiden	SIR Epidemics in Structured Populations avid Sirl ation Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures haroff Polynomials tibility Sets ize ize and Severity hics with Outside Infection	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epiden Mean H	SIR Epidemics in Structured Populations avid Sirl ation Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures haroff Polynomials tibility Sets ize ize and Severity hics with Outside Infection Final Size of a Multitype Epidemic	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The J	tochastic II and Da ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epiden Mean H	SIR Epidemics in Structured Populations avid Sirl	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The I	tochastic II and Da ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epiden Mean H Househo	SIR Epidemics in Structured Populations avid Sirl	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The 2.1 2.2	tochastic II and Da ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Total S Epiden Mean H Househo Introdu	SIR Epidemics in Structured Populations avid Sirl	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143 . 143
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The I 2.1 2.2 2.2	tochastic Il and Da ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epidem Mean H Househo Introdu Early S Eincl C	SIR Epidemics in Structured Populations avid Sirl ation Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures haroff Polynomials tibility Sets ize ize and Severity hics with Outside Infection Final Size of a Multitype Epidemic Stages buttoome of a Major Outbreak	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143 . 145
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The 2.1 2.2 2.3 2.4	tochastic II and Da ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Total S Epiden Mean H Househo Introdu Early S Final C	SIR Epidemics in Structured Populations avid Sirl ation Epidemics rd SIR Epidemic Model m Graph Representation of Epidemic etric Sampling Procedures haroff Polynomials tibility Sets ize ize and Severity fics with Outside Infection Final Size of a Multitype Epidemic action and Definition Stages Dutcome of a Major Outbreak etrical	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143 . 145 . 147
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The 1 2.1 2.2 2.3 2.4	tochastic II and Da ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epidem Mean H Househo Introdu Early S Final C Vaccin	SIR Epidemics in Structured Populations avid Sirl ation Epidemics	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143 . 145 . 147 . 148
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The 2.1 2.2 2.3 2.4	ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Total S Epiden Mean H Househo Introdu Early S Final C Vaccin 2.4.1	SIR Epidemics in Structured Populations avid Sirl	. 123 . 125 . 126 . 126 . 128 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143 . 143 . 145 . 147 . 148 . 148
Par Fra Int 1	t II St nk Bal roduct Singl 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 The 2.1 2.2 2.3 2.4	ion e Popula Standar Randor Symme Gontch Suscep Total S Total S Epidem Mean H Househo Introdu Early S Final C Vaccin 2.4.1 2.4.2	SIR Epidemics in Structured Populations avid Sirl	. 123 . 125 . 126 . 126 . 128 . 130 . 132 . 134 . 136 . 138 . 140 . 143 . 143 . 143 . 145 . 147 . 148 . 148 . 150

	2.5	Other]	Measures of Epidemic Impact	154		
	2.6	Exerci	ses	155		
3	A Ge	General Two-Level Mixing Model				
	3.1	Definit	tion and Examples	160		
		3.1.1	Standard SIR Model	161		
		3.1.2	Households Model	161		
		3.1.3	Households-workplaces Model	161		
		3.1.4	Great Circle Model	162		
		3.1.5	Network Model with Casual Contacts	162		
	3.2	Local	Infectious Clumps and Susceptibility Sets	163		
	3.3	Early S	Stages of an Epidemic	165		
		3.3.1	Introduction	165		
		3.3.2	Heuristics	165		
		3.3.3	The Basic Reproduction Number R ₀	168		
		3.3.4	Uniform Vaccination	170		
		3.3.5	Exponential Growth Rate	174		
		3.3.6	Formal Results and Proofs	175		
	3.4	Final C	Dutcome of a Global Outbreak	181		
		3.4.1	Heuristics	181		
		3.4.2	'Rigorous' Argument and Central Limit Theorem .	184		
	3.5	Applic	ations to Special Cases	192		
		3.5.1	Standard SIR Model	193		
		3.5.2	Households Model	194		
		3.5.3	Households-workplaces Model	197		
		3.5.4	Great Circle Model	203		
		3.5.5	Network Model with Casual Contacts	207		
Sol	utions			215		
Ref	erence	es for Pa	rt II	235		
Dor	4 111 6	tochooti	a Enidomias in a Ustano anno Comunita			
Far Vio		Stochasti From	ic Epidemics in a Heterogeneous Community			
VIC		ran				
Inti	roduct	ion		241		
	Judet		•••••••••••••••••••••••••••••••••••••••			
1	Rand	lom Gra	phs	243		
	1.1	Definit	ions	243		
	1.2	Classical Examples of Random Graphs				
	1.3	Sequer	aces of Graphs			
	1.4	Definit	ion of the SIR Model on a Random Graph			
2	The]	Reprodu	ction Number R ₀	251		
	2.1	Homog	geneous Mixing	252		
	2.2	Config	uration Model	252		
	2.3	Stocha	stic Block Models	255		

	2.4	Househo	old Structure	256
	2.5	Statistic	al Estimation of R ₀ for SIR on Graphs	256
	2.6	Control	Effort	257
3	SIR	Epidemics	s on Configuration Model Graphs	263
	3.1	Moment	Closure in Large Populations	263
	3.2	Volz and	I Miller Approach	267
		3.2.1	Dynamics of $\theta(t)$	269
		3.2.2	Miller's Equations	270
	3.3	Measure	e-valued Processes	271
		3.3.1	Stochastic Model for a Finite Graph with N Vertices .	271
		3.3.2	Dynamics and Measure-valued SDEs	272
		3.3.3	Rescaling	277
		3.3.4	Large Graph Limit	279
		3.3.5	Ball-Neal and Volz' Equations	281
		3.3.6	Degree Distribution of the "Initial Condition"	284
		3.3.7	Proof of the Limit Theorem	287
4	Stati	stical Des	cription of Epidemics Spreading on Networks: The	
	Case	of Cuban		299
	4.1	Modula	rity and Assortative Mixing	300
	4.2	Visual-n	nining	302
	4.3	Analysis	s of the "Giant Component"	304
	4.4	Descript	tive Statistics for Epidemics on Networks	307
		4.4.1	Estimating Degree Distributions	308
		4.4.2	Joint Degree Distribution of Sexual Partners	311
		4.4.3	Computation of Geodesic Distances and Other	
			Connectivity Properties	312
A	oondiv	· Finito N		215
Ap	penuix			515
Ref	erence	s for Part	± III	
Par	t IV S	Statistical	Inference for Epidemic Processes in a Homogeneou	IS
Cor	nmun	ity		
Cat	herine	e Larédo (with Viet Chi Tran in Chapter 4)	
T 4				
Inti	roduct	ion	• • • • • • • • • • • • • • • • • • • •	327
1	Ohse	rvations a	and Asymptotic Frameworks	331
•	11	Various	Kinds of Observations and Asymptotic Frameworks	331
	1.1	1 1 1	Observations	222
		112	Various Asymptotic Frameworks	227
		1 1 2	Various Estimation Methods	224
	12	$\Delta n E v or$	nnle Illustrating the Information these Various Situation	334
	1.2	1 2 1	A Simple Model for Deputation Dynamics: A D(1)	18.333
		1.4.1	A simple woder for ropulation Dynamics: $AR(1)$	555

.....

		1.2.2	Ornstein–Uhlenbeck Diffusion Process with Increasing	226
			Observation Time	330
		1.2.3	Urnstein-Unlenbeck Diffusion with Fixed Observation	240
		101	Time	340
		1.2.4	Ornstein–Unlenbeck Diffusion with Small Diffusion	241
			Coefficient	341
		1.2.5	Conclusions	342
2	Infere	ence for	Markov Chain Epidemic Models	343
	2.1	Markov	v Chains with Countable State Space	343
		2.1.1	Greenwood Model	345
		2.1.2	Reed–Frost Model	347
		2.1.3	Birth and Death Chain with Re-emerging	348
		2.1.4	Modeling an Infection Chain in an Intensive Care Unit	350
	2.2	Two E	xtensions to Continuous State and Continuous Time	
		Marko	v Chain Models	352
		2.2.1	A Simple Model for Population Dynamics	352
		2.2.2	Continuous Time Markov Epidemic Model	352
	2.3	Inferen	ce for Branching Processes	353
		2.3.1	Notations and Preliminary Results	353
		2.3.2	Inference when the Offspring Law Belongs to an	
			Exponential Family	355
		2.3.3	Parametric Inference for General Galton-Watson	
			Processes	358
		2.3.4	Examples	361
		2.3.5	Variants of Branching Processes	361
3	Infere	ence Bas	sed on the Diffusion Approximation of Epidemic Models	363
	3.1	Introdu	iction	363
	3.2	Diffusi	on Approximation of Jump Processes Modeling Epidemics	365
		3.2.1	Approximation Scheme Starting from the Jump Process	
			<i>Q</i> -matrix	365
		3.2.2	Diffusion Approximation of Some Epidemic Models	368
	3.3	Inferen	ice for Discrete Observations of Diffusions on [0,T]	373
		3.3.1	Assumptions, Notations and First Results	374
		3.3.2	Preliminary Results	376
	3.4	Inferen	ice Based on High Frequency Observations on $[0,T]$	381
		3.4.1	Properties of the Estimators	381
		3.4.2	Proof of Theorem 3.4.1	384
	3.5	Inferen	nce Based on Low Frequency Observations	395
		3.5.1	Preliminary Result on a Simple Example	395
		3.5.2	Inference for Diffusion Approximations of Epidemics	. 396
	3.6	Assess	ment of Estimators on Simulated Data Sets	401
		3.6.1	The SIR Model	402
		3.6.2	The SIRS Model	404
	3.7	Inferen	nce for Partially Observed Epidemic Dynamics	404

		3.7.1	Inference for High Frequency Sampling of Partial
			Observations
		3.7.2	Assessment of Estimators on Simulated and Real Data
			Sets
4	Infer	ence for	Continuous Time SIR models
•	4 1	Introdu	ction
	4.1	Maxim	um Likelihood in the SIR Case 418
	7.2	4 2 1	MCMC Estimation 421
		4.2.1	EM Algorithm for Discretely Observed Markov Jump
		1.2.2	Processes 423
	43	ABCE	stimation 427
	7.5	431	Main Principles of ABC 428
		432	Comparisons Between ABC and MCMC Methods for a
		7.5.2	Standard SIR Model 430
		433	Comparison Between ABC with Full and Binned
		4.5.5	Recovery Times 431
	44	Sensitiv	vity Analysis 435
	7.7	<u>4 4 1</u>	A Non-parametric Estimator of the Sobol Indices of
		4.4.1	Order 1 437
		442	Statistical Properties 439
		7.7.2	
Ap	pendix		
•	A.1	Some C	Classical Results in Statistical Inference
		A.1.1	Heuristics on Maximum Likelihood Methods
		A.1.2	Miscellaneous Results
	A.2	Inferen	ce for Markov Chains
		A.2.1	Recap on Markov Chains 449
		A.2.2	Other Approaches than the Likelihood
		A.2.3	Hidden Markov Models 456
	A.3	Results	for Statistics of Diffusions Processes
		A.3.1	Continuously Observed Diffusions on [0,T]
		A.3.2	Discrete Observations with Sampling Δ on a Time
			Interval [0,T]
		A.3.3	Inference for Diffusions with Small Diffusion Matrix
			on $[0,T]$
	A.4	Some I	Limit Theorems for Martingales and Triangular Arrays 460
		A.4.1	Central Limit Theorems for Martingales
		A.4.2	Limit Theorems for Triangular Arrays
	A.5	Inferen	ce for Pure Jump Processes
		A.5.1	Girsanov Type Formula for Counting Processes
		A.5.2	Likelihood for Markov Pure Jump Processes
		A.5.3	Martingale Properties of Likelihood Processes
Pe	forance	s for Do	rt IV 467
110	ici chice	JULIA	······································