Contents

Foreword					xxi		
Preface to the	he Firs	t Edition	1		xxiii		
Author					xxv		
		_	52				
PART I	Inti	roduc	tion				
Chapter 1	Over	view			3		
	1.1	Genera	al Importa	nnce of Aquatic Chemistry	2		
	1.2			s of Chemical Reactions in Natural Waters			
	1.3			cales			
	1.5	1.3.1		cates			
		1.3.1		/			
		1.3.3		/			
		1.3.4		ty			
		1.3.4		action			
	1.4	1.3.6		Fractions: ppm, ppb, and ppt			
	1.4			ivity Coefficients			
		1.4.1	Basic Pr	inciples	13		
		1.4.2	γ_i (Mola	I Scale Activity Coefficient in Water) Depends on	10		
	1.5	E 100		s, and on the Nature of the Solution			
	1.5	_	orium vs.	Kinetic Modeling	20		
		1.5.1					
		1.5.2	Kinetic	Approaches	20		
		1.5.3		dynamic Equilibrium Approach	23		
			1.5.3.1	General	23		
			1.5.3.2	Systems at Constant T and P (the Emphasis Here) vs .	22		
				Systems at Constant T and V			
			1.5.3.3	Equilibrium Constants – General	23		
			1.5.3.4				
	Refer	ences	•••••		26		
Chapter 2	Thermodynamic Principles						
	2.1	Free E	nergy and	Chemical Change	27		
	2.1	2.1.1	Systems	at Constant Temperature (T) and Pressure (P)	27		
		2.1.2	Systems	at Constant Temperature (T) and Volume (V)	28		
	2.2	Δ Pote	ntial Ener	gy Analog for Chemical Energy-Driven			
	2.2	Chamie	col Chang	©	29		
	2.3	Chomi	cal Dotant	ial and Its Relationship to Free Energy G	30		
	2.4	Dronon	tion and A	pplications of the Chemical Potential	32		
	2.4		Conoral	ppireations of the Chemical Forential	32		
		2.4.1	Changes	in Free Energy	32		
		2.4.2	Changes	In Fice Energy	25		
		2.4.3	The Role	e and Nature of μ_i°	دد		
		2.4.4	Standard	Free Energies of Formation ($\Delta G_{ m f}^{ m o}$) for Neutral Species.	37		

		2.4.5	Standard Free Energies of Formation ($\Delta G_{\rm f}^{\rm o}$) Values for Ionic	10
		2	C	4 0
		2.4.6	Concentration Scales and Standard States	+1
		2.4.7	The Standard State and the Activity Coefficient Reference	.10
			Convention	42
			2.4.7.1 General	
			2.4.7.2 Why Choose a Hypothetical Standard State for μ_i° on the Molality Scale?	42
			2.4.7.3 Meaning of the Hypothetical $\gamma_i = 1.0$, $m_i = 1.0$ Standard State	
	2.5	Effects	of T and P on Equilibrium Constants	43
	2.6	Combi	ning Equilibrium Expressions (to Get New Ones)	46
	2.7	Infinite	e Dilution, Constant Concentration, and "Mixed" Equilibrium	
		Consta	nts	47
		2.7.1	Infinite Dilution Constants	47
		2.7.2	Constant Ionic Medium Constants	48
		2.7.3	Mixed Constants	49
	2.8	Activit	y Coefficient Equations	50
		2.8.1	Activity Coefficient Equations for Single Ions	
		2.8.2	Activity Coefficient Equations for Neutral Species	
PART II			se Chemistry	57
Chapter 3	The	Proton (H ⁺) in Aquatic Chemistry	57
	3.1		al Importance of H ⁺ in Natural Waters	
	3.2		d We Refer to the Proton in Water as H ⁺ or H ₃ O ⁺ ?	
		3.2.1	Definitions	
		3.2.2	The Meaning for Both [H+] and [H ₃ O+]: Protons in Water Exist	
	Dof	rangas	as a Set of Species H^+ , H_3O^+ , $H_5O_2^+$,	60
	Keie	rences		61
Chapter 4	The Bala	Electron	neutrality Equation, Mass Balance Equations, and the Proton	63
	4.2	The I	luction	63
	4.3	Mace	Electroneutrality Equation (ENE)	63
	4.4	The I	Balance Equations (MBEs)	65
	-1. 1	THE	Proton Balance Equation (PBE)	67
Chapter 5	Qua	ntitative	e Acid/Base Calculations for Any Solution of Acids and Bases	73
	5.1	Intro	duction	
	5.2	Solut	from or the Generic Acid HA, All $\gamma = 1$	72
			introduction	13
		5.2.2	Solving for the speciation for a Solution of HA All was	
			Other wise NO Simplifying Assumptions	7.
		5.2.3	The [H ⁺] Polynomial Version in the HA Solution Problem	/5

5.2.4

				ution of HA	80
			5.2.4.1	ASA Alone	80
			5.2.4.2	ASA+WAA: Acidic Solution Approximation	
				Plus Weak Acid Approximation (WAA) for a	
				Solution of HA	82
			5.2.4.3	ASA+SAA: Acidic Solution Approximation	~ –
			0.1	Plus Strong Acid Approximation (SAA) for a	
				Solution of HA	92
	5.3	Calutia	n of the C		
	5.5			Generic Base NaA, All $\gamma_i = 1$	
		5.3.1		tion	85
		5.3.2		for the Speciation for a Solution of NaA – All $\gamma_i = 1$,	
				se No Simplifying Assumptions	86
		5.3.3		ving Using the Basic Solution Approximation (BSA) for	
				on of NaA	
			5.3.3.1	BSA Alone	89
			5.3.3.2	BSA+WBA: Basic Solution Approximation	
				Plus Weak Base Approximation (WBA) for a	
				Solution of NaA	91
			5.3.3.3	BSA+SBA: Basic Solution Approximation	
				Plus Strong Base Approximation (SBA) for a	
				Solution of NaA	92
	5.4	Solutio	ons of H.P	β , NaHB, and Na ₂ B, All $\gamma_i = 1$	
	5.1	5.4.1		tion $-\alpha$ Values for the Species Related to	> 2
		J.T.1		ic Acid	92
		5.4.2		of H_2B of Concentration $C(F)$	
				of NaHB of Concentration $C(F)$	
		5.4.3			
		5.4.4		of Na ₂ B of Concentration $C(F)$	
		5.4.5		on of H_2B , or NaHB, or Na ₂ B of Concentration $C(F)$	
	5.5			monia and Ammonium Salts	90
		5.5.1		noprotic Acid Form (NH ₄) Is Ionic, the Conjugate Base	
				IH ₃) Carries No Charge	
		5.5.2		of NH_4Cl of Concentration $C(F)$	
		5.5.3	Solution	of NH ₃ of Concentration C (F)	97
	5.6	Setting	Up the El	NE to Solve for the Speciation of Any Acid/Base Problem	98
		5.6.1	Foundat	ional Principles	98
		5.6.2		α Values for Each Acid/Base Family	
	5.7	Genera		ch for Solving for the Speciation Including Activity	
					99
		5.7.1		Values When Making Activity Corrections	
		5.7.2		Corrections When the Final Ionic Strength I Is Known	
		3.1.2	•	Corrections when the Final Joine Strength Fis Known	100
		5.7.3		Corrections When A Priori the Final Ionic Strength I Is	. 100
		5.7.5			101
	D.C			own	
	Refe	rence			. 103
Chapter 6	Dene	ndence :	of a Value	es on pH, and the Role of Net Strong Base	. 105
Chapter 0	•				
	6.1				
	6.2	_	and Logi	vs. pH Plots for Monoprotic Acid Systems	105
		6.2.1	$Log \alpha v$	s. pH Plots	. 103

Simplifying Using the Acidic Solution Approximation (ASA)

			$pH \ll pK_a$. 106
		6.2.2	$pH \ll pK_a$ $pH \gg pK_a$. 107
		6.2.3	PH≫pK _a Log[] vs. pH Plots	. 108
		6.2.4	vs. pH Plots and the Range of Chemistries of Solutions in a	
	6.3	Log[]	rotic Acid System	. 109
			Solution of HA – "The HA Equivalence Point"	109
		6.3.1	Solution of NaA – "The NaA Equivalence Point"	111
		6.3.2	Solution of NaA – The NaA Equivalence Folial Solution of HA" or "Solution of	
		6.3.3	NaA"	112
		(24	$C_B - C_A$: The Units of Net Strong Base Are Equivalents of	
		6.3.4	Charge per Liter	113
	Refe	ences	Charge per Liter	116
Chapter 7	Titra	tions of a	Acids and Bases	117
	7.1	Introdu	uction	117
	7.2	Titratio	ons in a Monoprotic Acid System	118
		7.2.1	General Considerations and Two Instructional Limiting Cases	
		7.2.2	f and g – The Math and the Meanings	
		7.2.3	Titrations with a Range of pK_a Values, and Inflection	
			Points (IPs)	123
	7.3	Using	the 1st Derivative to Find Titration Curve Equivalence Points (EPs)	127
	7.4	Gran 7	Titration Functions	
		7.4.1	General Considerations	130
		7.4.2	The "Outer" Gran Functions in an HA System: Quantifying	
			Strong Acid and Weak Acid Levels with $F_{f<0}^{HA}$ and $F_{f>1}^{HA}$	131
			7.4.2.1 Background	131
			7.4.2.2 $F_{f<0}^{\text{HA}}$	131
			7.4.2.3 $F_{f,2}^{HA}$	
		7.4.3	The Inner Gran Functions $(0 < f < 1)$ in an HA System: $F_{f < 1}^{HA}$	
			and $F_{f>0}^{\mathrm{HA}}$	125
			7.4.3.1 $F_{f<1}^{HA}$	135
			7.4.3.2 $F_{f>0}^{HA}$	136
		7.4.4	Determining Alkalinity (Alk) in the CO_2 System: $F_{f<0}^{CO_2^{2-}}$	137
	Ref	erences	, yeu	140
Chapter 8	Rnf	fer Inten	city B	
ompter (8.1		sity $oldsymbol{eta}$	
	8.2	Introd	duction	143
	8.3	p in s	wonoprotic Acid Systems	145
	8.4	Equa	tion for p in a Monoprotic Acid System	1.47
	0.4	8.4.1	$\mathbf{K}_{\mathbf{a}}$, $\mathbf{K}_{\mathbf{a}}$, $\mathbf{A}_{\mathbf{r}}$, and pH	150
		8.4.2	Ocheral	150
		0.4.2	Comparing the $2.303\alpha_0\alpha_1A_7$ Curve to the Lines for 2.303(H+1)	
	8.5	β in S	and 2.303[OH-]	15
		a Pol	yprotic Acidprotic Acid/Base Pair, or	
				1.51

	8.6		s of Dilution on pH in Buffer Solutions	
		8.6.1	General	156
		8.6.2	Specifics	156
Chapter 9	Chem	istry of	Dissolved CO ₂	159
	9.1	Introdu	uction	159
	9.2	Terms	Describing the Titration Position of a CO ₂ System	161
		9.2.1	General	
		9.2.2	Alk and H ⁺ -Acy: The $f = 0$ (H ₂ CO ₃) Equivalence Point	166
		9.2.3	The Base-Side Analogs of H+-Acy and Alk: OHAlk and Acy	
			and the $f = 2$ (Na ₂ CO ₃) Equivalence Point	172
		9.2.4	Alk = ANC, Acy = BNC	173
	9.3	Conse	rvation of Alkalinity	173
		9.3.1	General	173
		9.3.2	Conservation of Alk during Addition or Removal of CO ₂	173
		9.3.3	Conservation of Alk during Changes in T or P	174
		9.3.4	Conservation of Total Equivalents of Net Strong Base during	
			Mixing of Solutions	174
		9.3.5	Lack of Conservation of Alk during Precipitation or Dissolution	1
			of Carbonate Minerals	
	9.4	Log C	oncentration Diagrams in Closed (Fixed C _T) CO ₂ Systems	175
		9.4.1	General	175
		9.4.2	Log Concentration vs. pH Diagrams for Systems with	
			Fixed C _T	175
		9.4.3	The $f = 0$, 1, and 2 Equivalence Points (EPs) in a Log	
			Concentration vs. pH Diagram with Fixed C _T	177
		9.4.4	Buffer Intensity for Closed (Fixed C _T) CO ₂ Systems	178
	9.5	Open (CO_2 Systems with Fixed p_{CO_2}	179
		9.5.1	General	179
		9.5.2	Log Concentration vs. pH Diagrams for Open Systems with	100
			Fixed p_{CO_2}	182
		9.5.3	Alkalinity Expressed as a Function of C _T and pH, and as a	
			Function of p_{CO_2} and pH	
		9.5.4	The Universal Acidification Plot (UAP)	
		9.5.5	Buffer Intensity in Open CO_2 Systems with Fixed p_{CO_2}	
	9.6	Open	CO_2 Systems with p_{CO_2} a Variable	195
	9.7		ιp_{CO_2}	
	Refer	ences		198
PART III	M	letal/l	Ligand Chemistry	
Chapter 10	Com	plexatio	n of Metal Ions by Ligands	203
			uction	
	10.1		uction	
	10.2			
	10.2		ility Constants)lysis of Metal Ions	
	10.3		Metal Ions Act as Acids	
		111 1	INITIAL BUILD ALL AN ALBIN	4VI

		10.3.2 Polynuclear Hydroxo Complexes at High Total Metal	208
			212
	10.4	Concentrations	213
	10.5	C1 1	
	Refer	rences	210
PART IV	M	Ineral Solubility	
Chapter 11	Simp	ole Salts and Metal Oxides/Hydroxides/Oxyhydroxides	219
	11.1	Introduction	219
	11.2	Defining Where a Solution Is Relative to Exact Saturation	220
		11.2.1 Undersaturation, Saturation, and Supersaturation in	
		Terms of K_{s0}	220
		11.2.2 The Solid POV: The Solid Is Present; How Much Will	
		Dissolve to Reach Equilibrium? vs. The Solution POV: The	
		Solution Has a Specific Chemistry; Will Precipitation Occur,	221
		and If Yes, How Much?	221
	11.3	Simple Salts Involve Only "Spectator Ions"	226
	11.4		220
		11.4.1 The 1st (K_{s0}) Part of the Story – If the Dissolution	226
		Were Simple	220
		11.4.2 The Rest of the Story – Complexation by OH: K_{s1} , K_{s2} , etc.	
		(or ${}^*K_{s1}$, ${}^*K_{s2}$, etc.) and the Not-Simple Solubility of Metal Hydroxides, Oxides, and Oxyhyroxides	220
		11.4.3 Total Solubility of a Particular Metal Hydroxide, Oxide, or Oxyhydroxide vs. pH	232
		11.4.4 Solubility Differences among the Different Fe(III) Metal	
		Hydroxides, Oxyhydroxides, and Oxides	238
		11.4.5 Metal Hydroxide, Oxide, or Oxyhydroxide Equilibrated with	200
		Water and Some Value of $(C'_B - C'_A)$	239
		11.4.5.1 Initially Pure Water: $(C_B - C_A) = 0$, $C_T = 0$	
		11.4.5.2 Non-Zero Net Simple Strong Base (i.e., of the Types	
		NaOH and HCl): $(C'_B - C'_A) \neq 0$ with $C_T \neq 0$	
	Ref	ferences	
			2- 12-
Chapter 12) Soli	lubility Behavior of Calcium Carbonate and Other Divalent Metal	
Chapter 12	Car	rbonates in Closed and Open Systems	2.15
	12.		245
	12.		247
	12.	- Carefulli Carbonate +	
		Water + Variable $(C_B' - C_A')$)	247
		12.3.1 Solubility as a Function of pH	247
		12.3.2 The Particular pH When $(C'_B - C'_A) = 0$	249
	12.	12.3.3 pH When $(C'_B - C'_A) \neq 0$	251
	1 4.	$C_{\rm total}$ 3 Store 3 yatem, $C_{\rm T} = C_{\rm aT} + y$ (Calcium Carponate +	
		Water+Initial y Dissolved CO ₂ Variable $(C_B' - C_A')$	252
		The factorial pri when (CB - Ca) = ()	252
		Traded CO ₃ (y) oil Dissolution of Calcile When	
		$(C'_{B} - C'_{A}) = 0 \dots$	253

	12.5	Case III: Open System, Constant p_{CO_2} : Calcium Carbonate + Water +					
		Variable $(C'_{\rm B} - C'_{\rm A})$	254				
		12.5.1 Solubility as a Function of pH					
		12.5.2 The Particular pH When $(C'_B - C'_A) = 0$	255				
	D.C	12.5.3 pH as Affected by $(C'_B - C'_A) \neq 0$, as in Acid Rain					
	Refer	ences	260				
Chapter 13	Metal	Phosphates	261				
	13.1	General	261				
	13.2	Hydroxyapatite – $Ca_5(PO_4)_3(OH)_{(s)}$					
	13.3	Fluoroapatite – $Ca_5(PO_4)_3F_{(s)}$					
	13.4	Struvite – MgNH ₄ PO ₄ ·6H ₂ O _(s)					
	Refer	ences					
Chapter 14		h Solid Is Solubility Limiting? Examples with Fe(II) for FeCO _{3(s)} vs.					
	Fe(Ol	$H_{2(s)}$ Using Log p_{CO_2} vs. pH Predominance Diagrams	281				
	14.1	Introduction	281				
	14.2	Equilibrium Coexistence of Two Solids					
	14.3	Log p_{CO_2} vs. pH Predominance Diagrams with Regions for FeCO _{3(s)} ,					
		Fe(OH) ₂₍₃₎ , and Dissolved Fe(II) Species	282				
		14.3.1 Fe(II) _{T.sys} = $10^{-5} M$					
		14.3.1.1 FeCO ₃₍₃ /Fe(OH) ₂₍₃₎ Boundary Line					
		14.3.1.2 $Fe^{2+}/Fe(OH)_{2(s)}$ and $Fe(OH)_{2(s)}/Fe(OH)_3$					
		Boundary Lines					
		14.3.1.3 Fe ²⁺ /FeCO _{3(s)} and FeCO _{3(s)} /Fe(OH) ₃ Boundary Lines 14.3.1.4 "Old-School" Approximations for Drawing Boundary					
		Lines as Straight Lines					
		14.3.2 Dependence of the Diagram on Fe(II) _{T,sys}					
		14.3.3 Log p_{CO_2} vs. pH Predominance Diagram for Fe(II) _{T,sys} = 10^{-7} M	292				
		14.3.4 Log p_{CO_2} vs. pH Predominance Diagram for Fe(II) _{T,sys} = $10^{-9} M$					
	Refer	ence	295				
Chapter 15	The Kelvin Effect: The Effect of Particle Size on Dissolution and						
	Evaporation Equilibria						
	15.1	Introduction	297				
	15.2	The Interfacial Tension σ	298				
		15.2.1 The Origin of Interfacial Tension	298				
		15.2.2 The Effects of Surfactants on Interfacial Tension	300				
	15.3	The Interfacial Tension and the Pressure Increase across a Curved					
		Interface	301				
	15.4	Effect of $\Delta P(r)$ on Chemical Potential and Equilibrium	302				
		15.4.1 General	302				
		15.4.2 Equilibrium across a Flat Interface	303				
		15.4.3 Equilibrium across a Spherical Interface of Radius r	305				
		15.4.4 Cubic Particles of Dimension 2r	306				
	Refer	ences	308				
	_						

Chanter 16	Solid/	Solid and Liquid/Liquid Solution Mixtures	.309
Chapter 10		In the direction	309
	16.1	The second Foundations Governing the Formation of Solid and	
	16.2	I :: J Colutions	309
		16.2.1 General Equations	507
		16.2.2 Ideal Solutions	سدال
		16.2.3 Non-Ideal Solutions	313
		16.2.4 Chemical A When Present in a Solution vs. When Pure	313
	16.3	Phase Separation in Non-Ideal Solutions	216
		16.3.1 The $\Delta \bar{G}_{mxg}$ Curve and Phase Separation	310
		16.3.2 Tendency for Correlation between x_A^{α} and x_B^{β}	317 319
	Appe	ndix 16.A	319
		16.A.1 The Linear Mixing Curve for $\Delta \bar{G}_{mxg}$ vs. x_A in the Region Where	
		Phase Separation Occurs	321
		16.A.3 When Phase Separation Occurs, the Same Two Values of χ_{Λ}^{α}	
		and χ_A^β Are Obtained Regardless of the Values of n_A and n_B	321
	Refe	rences	323
Chapter 1'	7 Redo	ox Reactions, $E_{ m H}$, and pe	327
•	17.1		
	17.2		
	17.3		
		(But Using pe Has Advantages)	335
		17.3.1 E _H Equations	335
		17.3.2 pe Equations	
		17.3.2.1 The Concept of pe	344
		17.3.2.2 pe and the Redox K as Developed from the Nernst	
		Equation	346
		17.3.2.3 pe Is as Meaningful as $E_{\rm H}$	348
		the Same pe (and $E_{\rm H}$)	3.10
		17.3.2.5 Reference Electrodes, the $E_{\rm H}$ (pe) Combination	
		Electrode, and the pH Combination Electrode	349
	17.4	Redox Ladder	353
		17.4.1 Redox Ladder under Standard Conditions (Use pe° or $E_{\rm H}^{\rm o}$)	353
	17	17.4.2 Redox Ladder under Non-Standard Conditions	353
	17.:	Redox α Values	355
		17.5.1 General	355
		17.5.2 $\alpha_{O_2}^{\text{remaining}}$ - A Fraction-Remaining α for O_2 (For Comparison with Actual Redox α Values)	255
		$\alpha_{N(V)}$, the Redox α for N(V) When All N Is Dissolved and	
		Considering Only N(V) (as NOT) and N(O) (as NO	356
		17.5.4 $\alpha_{\text{Fe(III)}}$, the Redox α for Fe(III) When All Fe Is Dissolved	357

		17.5.5	$\alpha_{S(VI)}$, the Redox α for S(VI) When All S Is Dissolved and			
			Considering Only S(VI) (as HSO_4^- and SO_4^{2-}) and S(-II) (as			
			H ₂ S and HS ⁻)	358		
		17.5.6	$\alpha_{C(IV)}$, the Redox α for C(IV) When All C Is Dissolved and			
			Considering Only C(IV) (the CO ₂ species) and C(-IV) (as CH ₄).	359		
	17.6	Oxidati	on and Reduction of Water			
		17.6.1	Reduction of Water	360		
		17.6.2	Oxidation of Water	361		
		17.6.3	Redox Stability Limits for Water: The Redox Analog of			
			Thermal Boiling	361		
		17.6.4	pe Range for Most Natural Waters at 1 atm	363		
		17.6.5	The pe $(E_{\rm H})$ of Pure Water with No Added Oxidants of			
			Reductants – The Redox Analog of pH = $\frac{1}{2} \log K_w$ for Pure			
			Water (Optional)	363		
	Refer	ences		364		
Chapter 18	Intro	duction to	o pe-pH Diagrams: The Cases of Aqueous Chlorine, Hydrogen,			
onapior 10			- F - F	365		
		50				
	18.1		ction			
	18.2		Diagram for Aqueous Chlorine			
			Preliminary pe-pH Diagram for Aqueous Chlorine	366		
		18.2.2	Actual pe-pH Diagram for Aqueous Chlorine for	266		
			Some Specific Cl _T			
			Aqueous Cl ₂ : Disproportionation and Disinfection			
	18.3		Diagram for Aqueous Oxygen			
			Preliminary pe-pH Diagram for Aqueous Oxygen	374		
		18.3.2	Why H ₂ O ₂ Does Not Have a Predominance Region for			
			Aqueous Oxygen (Optional)			
			Actual pe-pH Diagram for Aqueous Oxygen			
	18.4		Diagram for Aqueous Hydrogen			
	18.5 The Mutual Exclusion of O ₂ and H ₂					
	References					
Chapter 19	pe-p	H Diagra	ams for Lead (Pb) with Negligible Dissolved CO ₂	381		
	10.1	Introdu	action	281		
	19.1					
	19.2		DIAGRAM FOR Pb _{T,sys} = $10^{-2} M$	501		
		19.2.1	and 0	201		
		10.2.2		301		
		19.2.2	The Two Vertical Solution $ \alpha\text{-PbO}_{(s)} $ Solution Boundary Lines and the Vertical Solution/Solution Boundary Line for Pb(II)	202		
		10.2.2				
		19.2.3	The Curved PbO _{2(s)} /Solution Boundary Line	رەد 207		
		19.2.4	The Straight PbO _{2(s)} /α-PbO _(s) Boundary Line	200		
		19.2.5	The Curved Solution/Pb _(s) Boundary Line			
		19.2.6	The Straight α-PbO _(s) /Pb _(s) Boundary Line	208		
		19.2.7	Implications of the Low C _T pe-pH Predominance			
			Diagrams for Tap Water by Oxidative (Corrosive) Dissolution			
			of Pb(0) in Lead Pipes, Lead-Containing Solder, and Lead-Containing Brass	200		
			Lead-Containing brass	209		

	19.3	ne-nH I	Diagram for Pb _{T,sys} = $10^{-3} M$	392
	Refere	ences	Simplifying Assumptions to Diaw po provent	393
			ago is Fixed C and	
Chapter 20	pe-pl	I Diagrai	ms for Lead (Pb) in the Presence of CO_2 with Fixed C_T , and Phosphate	397
	Fixed	C _T and I	Phosphate	307
	20.1	Introduc	ction	307
	20.2	pe-pH	Diagram for $Pb_{T,sys} = 10^{-5} M$ and $C_{T,free} = 10^{-3} M$	307
		20.2.1	General	271
		20.2.2	Solution $\alpha^{Pb(II)}$ Values with Hydroxide and Carbonate-Related Complexes	399
		20.2.3	Identification of the Pb(II) Solids That Limit Pb(II) Solubility	400
		20.2.4	The Two Vertical Solution/Pb(II) Solid Boundary Lines and	
		20.2	the Vertical Solution/Solution Boundary Lines for Pb(II)	404
		20.2.5	C(IV) Converted to C(-IV) (i.e., CH ₄) under Very Reducing	
			Conditions	405
		20.2.6	The Curved PbO ₂₆ /Solution Boundary Line	405
		20.2.7	The Curved Solution/Pb _(s) Boundary Line	405
		20.2.8	The Curved PbO _{2(s)} /Pb ₃ (CO ₃) ₂ (OH) _{2(s)} and Pb ₃ (CO ₃) ₂ (OH) _{2(s)} /	
			Pb _(s) Solid/Solid Boundary Lines	406
	20.3	pe-pH	Diagram for Pb _{T,sys} = $10^{-7} M$ and C _{T,free} = $10^{-3} M$	409
		20.3.1	General	409
		20.3.2	Solution $\alpha^{Pb(II)}$ Values with Hydroxide and Carbonate-Related	
			Complexes	409
		20.3.3	Identification of the Pb(II) Solids That Limit Pb(II) Solubility.	409
		20.3.4	The Vertical Solution/Solution Boundary Lines for Pb(II)	409
		20.3.5	C(IV) Converted to C(–IV) (i.e., CH ₄) under Very Reducing	
			Conditions	
			The Curved PbO _{2(s)} /Solution Boundary Line	
			The Curved PbO ₃ ²⁻ /Pb(II) _T Boundary Line	
			The Curved Solution/Pb _(s) Boundary Line	410
	20.4		I Diagram for $Pb_{T,sys} = 10^{-7} M$ with $C_{T,free} = 10^{-3} M$ and	
			= $10^{-5} M$ (~1 mg/L as Orthophosphate)	
			General	411
		20.4.2	Solution $\alpha^{Pb(II)}$ Values with Hydroxide, Carbonate-Related,	
			and Phosphate-Related Complexes	
		20.4.3	of the Louis That Ellin To(11) Solubility.	413
		20.4.4	110 Torried Solution b(11) Solid Boundary Lines and th	he
		20.4	Vertical Solution/Solution Boundary Lines for Pb(II)	414
		20.4.5	to control to control (i.e., CII ₄) under very Reducing	
		20.4.6	Conditions	415
		20.4.	2 Constitution Boundary Line	413
		20.4.	- To Car year 603 /1 b(11) T boundary Line	415
		20.4.9	Doundary Line	415
		20.1.		
	Ref	ferences.	Pb ₅ (PO ₄) ₃ OH _(s) /Pb _(s) Boundary Lines	416
				417

Chapter 21	pe and	l Natural	Systems	419
	21.1	Redox-C	Controlling Elements in Natural Waters	419
			Major vs. Minor Redox Elements	
			Full Redox Equilibrium Rarely Obtained in Natural Waters	
			pe° and pe°(W)	
	21.2		Diagram for Nitrogen	
			Redox Equilibria Governing Nitrogen Species	
			Identification of the pe-pH Predominance Regions for	
			Aqueous Nitrogen	422
	21.3		Diagrams for Iron with Fe _T = $10^{-5} M$, $C_T \approx 0$	
			General – Fe Has Three Important Oxidation States:	
			III, II, and 0	427
			Fe(III) _T /Fe(II) _T Boundary Line	
			Solution/(am)Fe(OH) _{3(s)} Boundary Line	
			Solution/Fe(OH) _{2(s)} Boundary Line	
			Solution/Fe _(s) Boundary Line	
		21.3.6	(am)Fe(OH) _{3(s)} /Fe(OH) _{2(s)} Boundary Line	433
			Fe(OH) _{2(s)} /Fe _(s) Boundary Line	
			Final pe-pH Diagram Comments	
	21.4		Diagrams for Iron with Fe _T = $10^{-5} M$, $C_{T,free} = 10^{-3} M$	
			General – Fe Oxidation States Are III, II, and 0; FeCO ₃₍₅₎	
			Needs to Be Considered	436
			Solubility Limitation by FeCO _{3(s)} vs. Fe(OH) _{2(s)}	
			(am)Fe(OH) _{3(s)} /FeCO _{3(s)} Boundary Line	
			FeCO _{3(s)} /Fe _(s) Boundary Line	
			Solution/FeCO _{3(s)} Boundary Line	
		21.4.6	Final pe-pH Diagram Comments	439
	21.5		Diagram for Sulfur with $S_T = 10^{-3} M$	
			Redox Equilibria Governing Sulfur Species	440
			Identification of the pe-pH Predominance Regions for	
			Aqueous Sulfur	
			Final pe-pH Diagram Comments	
	21.6		Diagram for Carbon	
			Redox Equilibria Governing Carbon Species	450
			Identification of the pe-pH Predominance Regions for	
			Aqueous Carbon	
		21.6.3	Final pe-pH Diagram Comments	452
			Disproportionation of Aqueous Organic Carbon Compounds	
	Refer	ences		457
Chapter 22	Redo	x Success	ion (Titration) in a Stratified Lake during a Period of Summer	
I	Stagn	ation		459
	22.1		tion	
			Lake Dynamics	
	22.2		The Effects of Lake Dynamics on pe	
	22.2	Model C	Considerations for a Hypothetical LakeInitial Conditions	402 160
		22.2.1	Assumptions Governing Nitrogen Redox Chemistry	402 162
		22.2.2	Assumptions Governing Mittogen Redux Chemistry	+03

		22.2.3 Equivalents per Liter (eq/l) as Units for Redox Reactions	463
		22.2.4 mg for Refere any Reactions Occur (Period V)	464
	22.3	The Four Sequential Redox Equivalence Points and Additional Redox	
	22	Landmarks	464
		22.3.1 The Sequential Equivalence Point (EP) Landmarks for O_2 ,	
		Nitrate Iron(III), and Sulfate	464
		22.3.2 Landmark Times Delineating the Different Periods	400
		22.3.2.1 General	400
		22.3.2.2 Period 0: Consumption of Initial OC	400
		22.3.2.3 Period 1: Reduction of O ₂ up to Activation of NO ₃	466
		22.3.2.4 Period 2: Reduction of NO ₃ up to Disappearance of (am)Fe(OH) _{3(s)} At Fe(II) EP	
		22.3.2.5 Period 3: Reduction of SO ₄ ² up to	
		Appearance of FeS _(s)	466
		22.3.2.6 Reduction of SO_4^2 and Disproportionation of	
		$C_6H_{12}O_6$ with $FeS_{(s)}$ Present-Period 4	468
	22.4	and the second of the second o	468
		22.4.1 The Redox Titration Equation (RTE)	468
		22.4.1.1 General	468
		22.4.1.2 The Terms in the RTE	
		22.4.1.3 RTE: A Function of pe and pH	469
		22.4.2 The Electroneutrality Equation (ENE)	472
		22.4.3 Results	
	22.5		
	Refe	rences	484
		ffects of Electrical Charges on Solution Chemistr Debye-Hückel Equation and Its Descendent Expressions for Activity	y
	Coef	fficients of Aqueous Ions	487
	23.1	Introduction	187
	23.2	The Debye–Hückel Law	488
		23.2.1 The Poisson Equation and the Local Charge Density	488
		23.2.2 $\psi_{\text{ion}}(r)$ and $\psi_{\text{cloud}}(r)$	490
		23.2.3 The Linearized Poisson–Boltzmann Equation	491
		23.2.4 Integrating the Linearized Poisson–Boltzmann Equation	493
		23.2.5 Determining $\psi_{\text{cloud}}(r)$	496
		23.2.6 Use of $\psi_{\text{cloud}}(r)$ Near the Core Ion to Derive the	
	23.3	Debye-Hückel Law	497
	23.4	and Extended Debye-Hucker Law	500
		Summary Comments on the Four Activity Coefficient Equations	502
			503
Chapter 2	4 Elec	ctrical Double Layers in Aqueous Systems	505
	24.	1 Introduction	
	24.3	The Origins of Charge at Solid/Water Interfaces.	505
		24.2.1 Surface Charge Resulting from the Effects of a Potential-	505
		Determining Ion (pdi)	
		d/	505

			24.2.1.1 A Constituent Ion of the Solid Is the pdi		
			24.2.1.2 H ⁺ and OH ⁻ as Potential-Determining Ions	507	
		24.2.2	Particles with Fixed Surface Charge – Clays	507	
	24.3	Similar	ities between Double-Layers and Ion/(Ion Cloud) Systems	509	
	24.4	The Ele	ectrochemical Potential	509	
		24.4.1	The Electrochemical Potential and Equilibrium in the		
			Presence of an Electrical Field	509	
		24.4.2	The Vertical Distribution of Gases in the Atmosphere and Its		
			Relation to the Distant-Dependent Concentration of Aqueous		
			Ions in a Double Layer	511	
	24.5	Double-	-Layer Properties as a Function of the Activity of a Potential-		
		Determining Ion			
			ψ° as a Function of the Activity of	512	
		21.5.1	a Positive Potential-Determining Ion	512	
		2452	ψ° as a Function of the Activity of	512	
		24.3.2	a Negative Potential-Determining Ion	515	
		24.5.3	Characteristics That Determine the Very Point of Charge (200)	515	
		24.3.3	Characteristics That Determine the Zero Point of Charge (zpc)	516	
	246	a	Activity of a Potential-Determining Ion		
	24.6		strations as a Function of Distance in the Aqueous Charge Layer		
			σ_+ and σ		
			The Boltzmann Distribution in the Aqueous Charge Layer		
			Reference Value for $\psi(\infty)$		
			σ_+ and σ for AB _(S) in Equilibrium with Initially Pure Water		
	24.7				
	24.8				
	24.9	Integrating the Differential Equation Governing the Aqueous Charge			
		Layer s	so as to Obtain $\psi(x)$	522	
		24.9.1	$z \psi^{\circ} $ Is Small (i.e., Sufficiently Close to Zero)	522	
		24 9 2	$z^{\dagger}\psi^{\circ}$ Is Not Necessarily Small	523	
	24.10		or All ψ°		
		.11 σ_s and σ_d			
	24.11	o_s and o_d			
			sysical Significance of κ^{-1}		
			s of κ^{-1} on the Properties of the Aqueous Charge Layer	529	
	24.14	24.14 Strategies for Using the Various Double-Layer			
	Equations in Solving Problems				
	References			531	
Chanter 27	G. H. 110, 121, and D. wilds Double Louise				
Chapter 25	Collo	Colloid Stability and Particle Double Layers			
	25.1		action		
	25.2	Coagul	lation		
		25.2.1	-		
		25.2.2			
		25.2.3		535	
	25.3	Electro	ostatic Repulsion vs. van der Waals Attraction	536	
		25.3.1	DLVO Theory	536	
		25.3.2			
	Refer	ences		540	
7 .				5/11	