Contents

	face	xiii
1.	Fluorescence microscopy methods for the study of protein oligomerization Roberto Arturo Petazzi, Amit Koikkarah Aji, and Salvatore Chiantia	1
	 Introduction Probing molecular oligomerization: Biophysical and biochemical methods 	3
	3. Fluorescent tags: Diverse methods to visualize proteins in situ4. Fluorescence-based methods to monitor protein-protein	4
	interactions 5. Conclusions Advanced demonts	9 28 30
	Acknowledgments References	30
2.	Computational prediction and redesign of aberrant protein oligomerization	43
	Jaime Santos, Valentín Iglesias, and Salvador Ventura	
	 Introduction Molecular determinants behind protein aberrant oligomerization Protein aggregation through the prism of evolution: Nature-inspired 	44 46
	strategies to ameliorate protein deposition 4. From folding to aggregation: Aberrant oligomerization from different native conformations	48 52
	5. Protein deposition in the biotechnological industry: Aggregation out of context	70
	6. Conclusions References	75 75
3.	Porphobilinogen synthase: An equilibrium of different assemblies in human health	85
	Eileen K. Jaffe	
	Porphobilinogen synthase—Background	86
	2. The structures of PBGS	88
	3. The PBGS octamer ⇔ hexamer equilibrium	91

	÷-	Contents
	4. Single amino acid substitutions can dramatically alter the human PBGS	
	quaternary structure equilibrium 5. Disease-associated single amino acid variants of human PBGS are	95
	hexamer-stabilizing	98
	6. Practical and health-related applications of small molecule perturbation	90
	of the PBGS quaternary structure equilibrium	99
	7. Concluding remarks	101
	Acknowledgments	102
	References	102
4.	Prediction and targeting of GPCR oligomer interfaces	105
	Carlos A.V. Barreto, Salete J. Baptista, António José Preto,	
	Pedro Matos-Filipe, Joana Mourão, Rita Melo, and Irina Moreira	
	1. Introduction	106
	Characterization and prediction of oligomer interfaces	109
	3. Targetting PPIs: Orthosteric and allosteric modulation	132
	4. Concluding remarks	134
	Acknowledgments	135
	References	136
5.	Integrated structural modeling and super-resolution imaging	
	resolve GPCR oligomers	151
	Francesca Fanelli, Aylin C. Hanyaloglu, and Kim Jonas	
	1. Introduction	152
	 Evidence and pathophysiological role of LHR di/oligomerization The FiPD-based approach to model LHR dimerization- 	154
	oligomerization	163
	4. Conclusions	174
	Acknowledgments	175
	References	175
б.	Exploring functional consequences of GPCR oligomerization	
	requires a different lens	181
	Kyla Bourque, Jace Jones-Tabah, Dominic Devost, Paul B.S. Clarke,	
	and Terence E. Hébert	
	1. Introduction	182
	2. Interactions between GPCR protomers require close proximity	183
	3. Examples of selected GPCR hetero-oligomers- from in vitro to in vivo4. Allosteric interactions versus canonical receptor crosstalk mediated by	185
	protein kinases	187

Contents

	5. The interaction between the two or more protomers can alter	
	pharmacological properties	190
	6. The interaction between the two or more protomers can	
	alter trafficking patterns	193
	7. The interaction between the two or more protomers can alter	
	G protein specificity	195
	8. The interaction between two or more promoters should be sensitive	
	to mutations or other dimer interfering mechanisms	197
	9. An example of allosteric signaling outcomes mediated via FP/AT ₁ R	
	heterodimers	200
	10. Concluding remarks	205
	References	207
7.	Continuing challenges in targeting oligomeric	
	GPCR-based drugs	213
	Joaquin Botta, Julia Appelhans, and Peter J. McCormick	
	1. Introduction	213
	2. Molecular interfaces involved in GPCR oligomerization	218
	3. Minimal functional units	221
	4. Heteromerization provides new allosteric opportunities	223
	5. Heteromer-driven biased signaling	227
	6. Heteromers modulate receptor biogenesis, arrestin signaling and	
	trafficking	229
	7. Switching of coupling selectivity as a mechanism for signal	
	integration by receptor hetero-oligomers	231
	8. Oligomers as drug targets	232
	References	236
8.	Adenosine A _{2A} -dopamine D ₂ receptor-receptor interaction	
	in neurons and astrocytes: Evidence and perspectives	247
	Diego Guidolin, Manuela Marcoli, Cinzia Tortorella, Guido Maura,	
	and Luigi F. Agnati	
	1. Introduction	248
	2. Structural biology of the A _{2A} -D ₂ receptor complex	250
	3. Distribution of the A_{2A} - D_2 receptor complex in cells and tissues	254
	4. Pharmacological features of the A _{2A} -D ₂ receptor complex	257
	5. A _{2A} -D ₂ heteroreceptor complex: A target for drugs?	261
	6. Concluding remarks	265
	References	268

		nts
U	116	111

	-	Contents
9.	Genetic variants in dopamine receptors influence on heterodimerization in the context of antipsychotic drug action	279
	Agata Faron-Górecka, Maciej Kuśmider, Joanna Solich, Andrzej Górecki, and Marta Dziedzicka-Wasylewska	
	1. Introduction	280
	2. Effect of SNPs on GPCRs dimerization	283
	References	291
	Further reading	296
10.	Oligomerization of G protein-coupled receptors: Still doubted?	297
	Sergi Ferré, Francisco Ciruela, Vicent Casadó, and Leonardo Pardo	770
	1. Introduction	298
	2. Classical GPCR allosterism	299
	3. Allosterism in GPCR monomers	300
	4. Allosterism in GPCR homomers	303
	5. Allosterism in GPCR heteromers	308
	6. Molecular architecture of GPCR heteromers	313
	7. Final remarks	317
	Acknowledgments	317
	References	318
Inde		323