CONTENTS

General Introduction

PART I. HOMOLOGY THEORY OF POLYHEDRA

Background to Part I

	I.1	Analytic topology	3
	I.2	Algebra	8
	1.3	Zorn's lemma	12
1	The Top	pology of Polyhedra	
	1.1	Rectilinear simplexes	14
	1.2	Geometric simplicial complexes	17
	1.3	Polyhedra	20
	1.4	Regular subdivision	22
	1.5	The cone construction	25
	1.6	Homotopy	28
	1.7	Simplicial maps	34
	1.8	The simplicial approximation theorem	37
	1.9	Abstract simplicial complexes	41
	1.10	* Infinite complexes	45
	1.11	Pseudodissections	49

2 Homology Theory of a Simplicial Complex

2.1	Orientation of a simplex	53
2.2	Chains, cycles and boundaries	56
2.3	Homology groups	59
2.4	$H_0(K)$ and connectedness	62
2.5	Some examples and torsion	64
2.6	Contrahomology and the Kronecker product	66
2.7	Contrahomology examples	70
2.8	Relative homology and contrahomology	73

.

CONTENTS

	• •				
	2.9	The exact sequences	page 80		
	2.10	Homology groups of certain complexes	83		
	2.11	Homology and contrahomology in infinite complexes	86		
	2.12	* Abstract cell complexes	87		
3	Chain C	Complexes			
	3.1	Chain and contrachain complexes	95		
	3.2	Examples of chain complexes and chain maps	100		
	3.3	Chain and contrachain homotopy	105		
	3.4	Acyclic carriers	108		
	3.5	Chain equivalences in simplicial complexes	113		
	3.6	Continuous maps of polyhedra and the main theorems	116		
	3.7	Local homology groups at a point of a polyhedron	124		
	3.8	Simplex blocks	127		
	3.9	Homology of real projective spaces	133		
	3.10	* Appendix on chain equivalence	136		
4	The Co	ntrahomology Ring for Polyhedra			
	4.1	Definition of the ring for a complex	140		
	4.2	Relativization, induced homomorphisms and topologica invariance	ıl 145		
	4.3	Calculations, examples and applications	149		
	4.4*	The cap product	153		
5	5 Abelian Groups and Homological Algebra				
	5.1	Standard bases for chain complexes	158		
	5.2	Homology with general coefficients and contrahomolog	y 167		
	5.3	Free and divisible groups	178		
	5.4	Homology and contrahomology in infinite complexes	183		
	5.5	The products \otimes , *, \wedge , †	196		
	5.6	Exact sequences	203		
	5.7	Tensor products of chain complexes	209		
	5.8	Appendix 1: Applications of the Hopf Trace Theorem	218		
	5.9	Appendix 2: The group $Ext(A,B)$	220		
:	5.10	Appendix 3: Lens spaces	223		

			CONTENTS	vii
6	The	Fun	damental Group and Covering Spaces	
		6.1	Definitions of the fundamental group page	228
		6.2	Role of the base-point	232
		6.3	Calculation of the fundamental group of a polyhedron	235
		6.4	Further theorems and calculations	242
	P	6.5	Covering spaces	247
		6.6	Existence and uniqueness theorems for covering spaces	253
		6.7	The universal covering space	261
		6.8	The covering space of a polyhedron	262
		6.9*	Appendix: Fundamental group and covering groups of topological groups	265

ļ

PART II. GENERAL HOMOLOGY THEORY

Background to Part Π

7

8

II. 1	Homotopy groups	273
11.2	Function spaces and loop spaces	285
11.3	Fibre spaces, relative homotopy groups and exact homotopy sequences	288
Contrah	omology and Maps	
7.1	Introduction	290
7.2	The obstruction contracycle	291
7.3	The homotopy extension problem	294
7.4	Applications	298
7.5*	Maps of polyhedra into S^m	303
7.6	Local systems of groups and obstruction theory in non-simple spaces	307
7.7*	Contrahomology and compression	309
Singula	r Homology Theory	: · . · ·
8.1	Description and scope of the theory	313
8.2	The normalized singular chain complex	318
8.3	Cubical homology theory	321
8.4	Equivalence theorems	324

CONTENTS

	8.5	The properties of singular homology	page	329
	8.6	The singular homology theory of a polyhedron		336
	8.7	Homology groups of topological products		341
	8.8	The singular theory of n -connected spaces		344
	8.9*	Singular homology with local coefficients		349
	8.10	Appendix: Čech contrahomology theory		353
9 The Singular Contrahomology Ring				
	9.1	Definitions and properties		361
	9.2	Skew-commutativity of $R^*(X)$		364
	9.3*	Cup products in cubical contrahomology		367
	9.4	The contrahomology ring of a topological product		372
	9.5	The Hopf invariant		379
	9.6*	Appendix: Naturality		387

10* Spectral Homology Theory and Homology Theory of Groups

	10.1	Filtration	394
	10.2	The spectral sequence of a differential filtered group	397
	10.3	Spectral theory for a differential filtered graded group	406
	10.4	Spectral theory of a map; fibre spaces	413
	10.5	Spectral contrahomology theory	422
	10.6	Spectral sequence of a fibre map: applications	42 8
	10.7	Homology and contrahomology of modules and groups	444
	10.8	The spectral sequence associated with a covering	464
	10.9	Appendix: Application to simplex blocks	469
	10.10	Appendix: The spectral sequence associated with a group, normal subgroup and quotient group	470
Bibliog	raphy		477
Index			479