Contents

1. Functions of one variable. Complex numbers 1Roots of quadratic and cubic equations. Polynomials. Descartes's rule of signs.Classification of conics. Asymptotes. Newton's approximation method. Powers,exponentials, and logarithms. Trigonometric and hyperbolic functions. Complexnumbers.
2. Limits. Differentiation (one variable) 9
Limits. Continuity. The intermediate value theorem. Differentiable functions. General and special rules. Mean value theorems. L'Hôpital's rule. Differentials.
3. Partial derivatives 13
Partial derivatives. Chain rules. Differentials. Slopes of level curves. Implicit function theorem. Homogeneous and homothetic functions. Gradients and direc- tional derivatives.
4. Elasticities. Elasticities of substitution 17
General and special rules. Directional elasticities. Marginal rate of substitution. Elasticity of substitution for functions of two and n variables. Allen-Uzawa's elasticity of substitution. Morishima's elasticity of substitution.
5. Systems of equations 21
General systems of equations. Jacobians. General implicit function theorem.Degrees of freedom. The counting rule. Functional dependence. Local and globalinverse function theorems. Gale-Nikaido theorems. Contraction mapping theorem.Brouwer and Kakutani's fixed point theorems. General results on linear systemsof equations.
6. Inequalities 27Inequalities for arithmetic, geometric, and harmonic means. Inequalities of Hölder,Cauchy-Schwarz, Chebyshev, Minkowski, and Jensen.
7. Series. Taylor formulas 31
Arithmetic and geometric series. Convergence criteria. Maclaurin and Taylor formulas. Binomial coefficients. Newton's binomial formula. Summation formulas.
8. Integration 35
General and special rules. Convergence of integrals. Comparison test. Leibniz's formula. The Gamma function. Stirling's formula. The Beta function. Trapezoid formula. Simpson's formula. Multiple integrals.
9. Difference equations. (Recurrence relations.) 43
Solutions of linear equations of first, second, and higher order. Stability. Schur's theorem. Matrix formulations.
10. Differential equations 47
Separable, projective, and logistic equations. Linear first-order equations. Ber- noulli and Riccati equations. General linear equations. Variation of parameters. Stability for linear equations. Routh-Hurwitz's criterion. Autonomous systems. Local and global stability. Liapunov theorems. Lotka-Volterra models. Local saddle point theorem. Local and global existence theorems. Partial differential equations of the first order.
11. Topological concepts in Euclidean space 55
Point set topology. Convergence of sequences. Cauchy sequences. Continuous functions. Sequences of functions. Correspondences. Lower and upper hemiconti- nuity. Infimum and supremum.
12. Convexity 59
Convex sets. Separation theorems. Concave and convex functions. Hessian ma- trices. Quasi-concave and quasi-convex functions.
13. Classical optimization 65
Basic definitions. First-order conditions. Second-order conditions. Constrained optimization. Lagrange's method. Properties of Lagrange multipliers.
14. Linear and nonlinear programming 71
Basic results in linear programming. Duality. Shadow prices. Complementary slackness. Kuhn-Tucker theorems. Saddle point results. Quasi-concave program- ming. Properties of value functions. Nonnegativity conditions.
15. Calculus of variations and optimal control theory 77
The simplest problem. Euler's equation. Legendre's condition. Transversality conditions. Sufficient conditions. Scrap value functions. More general variational problems. Control problems with fixed time interval. The maximum principle.

Mangasarian and Arrow's sufficiency conditions. Properties of the value function. Free terminal time problems. Scrap value functions. Current value formulations. Linear quadratic problems. Infinite horizon problems.

> Dynamic programming. The fundamental equation. Infinite horizon. Discrete optimal control theory.
17. Vectors. Linear dependence. Scalar products 89
Linear dependence and independence. Subspaces. Bases. Scalar products. Norm of vectors. Angles between vectors in R^{n}.
18. Determinants 93
2×2 - and 3×3-determinants. General determinants and their properties. Cofac- tors. Vandermonde and other special determinants. Minors.
19. Matrices 97
Special matrices. Matrix operations. Inverse matrices and their properties. Trace. Rank. Matrix norms. Partitioned matrices.
20. Characteristic roots. Quadratic forms 103
Characteristic roots and vectors. Diagonalization. Spectral theory. Jordan de- composition. Cayley-Hamilton's theorem. Quadratic forms and criteria for their signs. Singular value decomposition. Simultaneous diagonalization.
21. Special matrices. Leontief systems 109
Properties of idempotent, orthogonal, and permutation matrices. Nonnegative matrices. Frobenius roots. Decomposable matrices. Leontief systems. Hawkins- Simon conditions. Dominant diagonal matrices.
22. Kronecker products and the vec operator 113
Definition and properties of Kronecker products. The vec operator and its prop- erties.
23. Differentiation of vectors and matrices 117
Differentiation of vectors, matrices, and determinants with respect to elements, vectors, and matrices.
24. Comparative statics. Value functions 119
Equilibrium conditions. Comparative statics. The value function. Envelope re- sults.
25. Properties of cost and profit functions 123
Cost functions. Conditional factor demand functions. Shephard's lemma. Profit functions. Factor demand functions. Supply functions. Hotelling's lemma. Puu's equation. Special functional forms and their properties. Cobb-Douglas, CES, Law of the minimum, Translog cost functions.
26. Consumer theory 129
Utility maximization. Indirect utility functions. Consumer demand functions. Roy's identity. Expenditure functions. Hicksian demand functions. Slutsky equa- tion. Equivalent and compensating variations. Special functional forms and their properties. AIDS, LES, and Translog indirect utility function.
27. Topics from finance and growth theory 135
Compound interest. Effective rate of interest. Present value calculations. Internal rate of return. Norstrøm's rule. Solow's growth model. Ramsey-type problem.
28. Risk and risk aversion theory 139
Absolute and relative risk aversion. Arrow-Pratt risk premium. Stochastic dom- inance of first and second degree. Hadar and Russell's theorem. Rothschild- Stiglitz's theorem.
29. Finance and stochastic calculus 141
Capital asset pricing model. Black and Schole's option pricing model. European call option. Stochastic integrals. Ito's formulas. A stochastic control problem. Hamilton-Jacobi-Bellman's equation.
30. Non-cooperative game theory 145
An n-person game. Nash equilibrium. Mixed strategy extension of a game. Two- person games. Minimax theorem. Exchangeability property.
31. Statistical concepts 149
Probability. Bayes rule. Expectation. Variance. Covariance. Correlation co- efficient. Chebychev's inequality. Estimators. Bias. Marginal and conditional densities. Testing. Power of a test. Type I and type II errors. α-level of signifi- cance.
32. Statistical distributions. Estimators 153
Binomial, multinomial and hypergeometric distributions. Poisson, normal, expo- nential, uniform, geometric, Gamma, Beta, Chi-square, Student, and F-distribu- tions. Method of least squares. Multiple regression.
Bibliography 157
Index 161

