Contents

PREFA	FACE TO SECOND EDITION	
PREFA	CE TO FIRST EDITION	v
INTRO A.	DUCTION Scope of the Book	XV
В.	Outline of the Book	xviii
SOME	FREQUENTLY USED NOTATIONS	3
CHAP	TER 0 PRELIMINARIES	5
Α.	Mathematical Preliminaries	5
	a. Some Basic Concepts and Notations	5
	b. R ⁿ and Linear Space	9
	c. Basis and Linear Functions	14
	d. Convex Sets	20
	e. A Little Topology	23
В.	Separation Theorems	39
C.	Activity Analysis and the General Production Set	49
CHAP	TER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING	59
Α.	Introduction	59
В.	Concave Programming—Saddle-Point Characterization	66
C.	Differentiation and the Unconstrained Maximum Problem	79
	a. Differentiation	79
	b. Unconstrained Maximum	86
D.	The Quasi-Saddle-Point Characterization	90
Appen	dix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem	106

X CONTENTS

E.	Some Extension	ns	112
	b. The Vector	eave Programming Maximum Problem Forms, Hessians, and Second-Order Conditions	113 116 121
F.		nvelope Theorem, Duality, and Related Topics	133
	a. Some Applb. The Enveloc. Elements o	ications pe Theorem f Micro Theory of Factor Substitution, Duality, and	133 137 141
G.	Linear Program	ming and Classical Optimization	155
	c. Comparatived. The Second	al Theory of Optimization	156 159 161 162 163
CHAF	TER 2 THE TH	HEORY OF COMPETITIVE MARKETS	169
A . B.	Introduction Consumption S	Set and Preference Ordering	169 175
	c. Utility Fund	ring and Preference Ordering	175 176 179 181
C.	The Two Classi	ical Propositions of Welfare Economics	185
Appe	ndix to Section C	: Introduction to the Theory of the Core	20-
	a. Introductiob. Some Basicc. Theorems ofd. Some Illustree. Some Rema	Concepts of Debreu and Scarf rations	204 207 213 218 224
D.	Demand Theory	,	23-
Apper	ndix to Section D.	: Various Concepts of Semicontinuity and the Maximum Theorem	249
		ncepts of Semicontinuity um Theorem	249 253
E.	The Existence o	f Competitive Equilibrium	255
	a. Historical Bb. McKenzie's		255 265
Appen	dix to Section E:	On the Uniqueness of Competitive Equilibrium	280

F.	Programming, Pareto Optimum, and the Existence of	
	Competitive Equilibria	285
CHAP	TER 3 THE STABILITY OF COMPETITIVE EQUILIBRIUM	295
Α.	Introduction	295
B. C.	Elements of the Theory of Differential Equations The Stability of Competitive Equilibrium—The Historical	302
0.	Background	313
D.	A Proof of Global Stability for the Three-Commodity Case (with	
	Gross Substitutability)—An Illustration of the Phase Diagram Technique	321
E.	A Proof of Global Stability with Gross Substitutability—The	521
F.	n-commodity Case Some Remarks	325 331
١.	a. An Example of Gross Substitutability	331
	b. Scarf's Counterexample	333
	c. Consistency of Various Assumptions d. Nonnegative Prices	335
G.	d. Nonnegative Prices The <i>Tâtonnement</i> and the Non- <i>Tâtonnement</i> Processes	336 339
u.	a. The Behavioral Background and the Tâtonnement Process	340
	b. The <i>Tâtonnement</i> and the Non- <i>Tâtonnement</i> Processes	341
Н.	Liapunov's Second Method	347
CHAP	TER 4 FROBENIUS THEOREMS, DOMINANT DIAGONAL	
	MATRICES, AND APPLICATIONS	359
Α.	Introduction	359
B. C.	Frobenius Theorems Dominant Diagonal Matrices	367 380
D.	Some Applications	391
	a. Summary of Results	391
	b. Input-Output Analysisc. The Expenditure Lag Input-Output Analysis	394 396
	c. The Expenditure Lag Input-Output Analysis d. Multicountry Income Flows	397
	e. A Simple Dynamic Leontief Model	398
	f. Stability of Competitive Equilibrium	399 403
	g. Comparative Statics	403
СНАР	TER 5 THE CALCULUS OF VARIATIONS AND THE	
	OPTIMAL GROWTH OF AN AGGREGATE ECONOMY	410
Α.	Elements of the Calculus of Variations and Its Applications	410
Λ.	a. Statement of the Problem	410

xii contents

	b. Euler's Equationc. Solutions of Illustrative Problems	413 415
В.	Spaces of Functions and the Calculus of Variations	419
	a. Introductionb. Spaces of Functions and Optimizationc. Euler's Condition and a Sufficiency Theorem	419 421 426
C. D.	A Digression: The Neo-Classical Aggregate Growth Model The Structure of the Optimal Growth Problem for an Aggregate Economy	432 444
	 a. Introduction b. The Case of a Constant Capital:Output Ratio c. Nonlinear Production Function with Infinite Time Horizon 	444 450 459
Арреі	ndix to Section D: A Discrete Time Model of One-Sector Optimal Growth and Sensitivity Analysis	468
	 a. Introduction b. Model c. The Optimal Attainable Paths d. Sensitivity Analysis: Brock's Theorem 	468 470 474 480
СНАР	TER 6 MULTISECTOR MODELS OF ECONOMIC GROWTH	486
A.	The von Neumann Model	486
	a. Introductionb. Major Theoremsc. Two Remarks	486 491 497
В.	The Dynamic Leontief Model	503
	 a. Introduction b. The Output System c. The Price System d. Inequalities and Optimization Model (Solow) e. Morishima's Model of the Dynamic Leontief System 	503 507 517 522 527
Appei	ndix to Section B: Some Problems in the Dynamic Leontief Model—The One-Industry Illustration	541
СНАР	TER 7 MULTISECTOR OPTIMAL GROWTH MODELS	559
A.	Turnpike Theorems	559
	 a. Introduction b. The Basic Model and Optimality c. Free Disposability and the Condition for Optimality d. The Radner Turnpike Theorem 	559 561 563 567
В.	Multisector Optimal Growth with Consumption	575
	a. Introduction	575

			CONTENTS	xiii
	b.c.d.e.f.	- F		577 580 583 587 594
CHAP	TER	8 DEVELOPMENTS OF OPTIMAL CONTROL THEORY AND ITS APPLICATIONS		600
A.	Por	ntryagin's Maximum Principle		600
	a.b.c.d.			600 606 609 617
В.	Soi	me Applications		627
	a. b.	Regional Allocation of Investment Optimal Growth with a Linear Objective Function		627 638
C.	Fur	ther Developments in Optimal Control Theory		646
	a. b. c.	Constraint: $g[x(t), u(t), t] \ge 0$ Hestenes' Theorem A Sufficiency Theorem		646 651 660
D.	Tw	to Illustrations: The Constraint $g[x(t), u(t), t] \ge 0$ and the Use of the Control Parameter		667
	a. b.	Optimal Growth Once Again Two Peak-Load Problems		667 671
E.		e Neo-Classical Theory of Investment and Adjustment sts—An Application of Optimal Control Theory		685
	a. b. c. d.	The Case with Adjustment Costs		685 688 697 703
INDE	XES			721