CONTENTS

Preface								vii
Acknowledgemen	\mathbf{ts}							ix

CHAPTER I

STATIC MAXIMAL FLOW

	Introduction	•	•				•	•	•	•	•		•	•		1.
1.	Networks .								•							2
2.	Flows in net	vork	s													4
3.	Notation .		•							•						9
4.	Cuts									•						10
5.	Maximal flow	1.														11
6.	Disconnectin	g se	ts a	nd (cuts	3									•	14
7.	Multiple sour	ces	and	sin	ks			•	•		•		•		•	15
8.	The labeling	met	hod	for	\cdot sol	lvin	g m	axi	mal	flo	w p	rob	len	ıs	•	17
9.	Lower bound	s or	ar ar	e fle	ws						•		•	•	•	22
10.	Flows in und	irec	ted	and	l mi	ixed	l ne	two	rks							23
11.	Node capacit	ies a	and	oth	er e	exte	ensi	ons								23
12.	Linear progra	amn	ning	an	d di	uali	ty j	prin	cipl	es						26
13.	Maximal flow	v va	lue	as e	ı fu	ncti	ion	of t	wo	arc	cap	paci	ties	ι.		30
	References				•			•		•	•		•	•		35

CHAPTER II

FEASIBILITY THEOREMS AND COMBINATORIAL APPLICATIONS

	Introduction	36
1.	A supply-demand theorem	36
2.	A symmetric supply-demand theorem	42
3.	Circulation theorem	50
4.	The König-Egerváry and Menger graph theorems	5
5.	Construction of a maximal independent set of admissible cells.	5
6.	A bottleneck assignment problem	5'
7.	Unicursal graphs	5
8.	Dilworth's chain decomposition theorem for partially ordered	
	sets	6
9.	Minimal number of individuals to meet a fixed schedule of tasks	6
l0.	Set representatives	6

CONTENTS

11.	The subgraph	\mathbf{pr}	oble	m f	for a	lire	cted	l gr	apł	ıs					75
12.	Matrices comp	pose	d o	f 0'	s ar	nd 1	's	•			•	•			79
	References	•							•					•	91

CHAPTER III

MINIMAL COST FLOW PROBLEMS

	Introduction \ldots	93
1.	The Hitchcock problem	95
2.	The optimal assignment problem	111
3.	The general minimal cost flow problem	113
4.	Equivalence of Hitchcock and minimal cost flow problems	127
5.	A shortest chain algorithm	130
6.	The minimal cost supply-demand problem: non-negative)
	directed cycle costs	134
7.	The warehousing problem	137
8.	The caterer problem	. 140
9.	Maximal dynamic flow	142
10.	Project cost curves	. 151
11.	Constructing minimal cost circulations	. 162
	References	. 169

CHAPTER IV

MULTI-TERMINAL MAXIMAL FLOWS

Introduction					•		•		•	•			173
Forests, trees, and span	nnir	ıg sı	ıbtı	ees					•				173
Realization conditions										•			176
Equivalent networks							•						177
Network synthesis .			•		•					•			187
References													191
	Introduction Forests, trees, and spa Realization conditions Equivalent networks Network synthesis . References	Introduction Forests, trees, and spannir Realization conditions . Equivalent networks . Network synthesis References	Introduction	IntroductionForests, trees, and spanning subtrRealization conditions.Equivalent networks.Network synthesis.References.	IntroductionForests, trees, and spanning subtreesRealization conditionsEquivalent networksNetwork synthesisReferences	IntroductionForests, trees, and spanning subtrees.Realization conditionsEquivalent networksNetwork synthesisReferences	IntroductionForests, trees, and spanning subtreesRealization conditionsEquivalent networksNetwork synthesisReferences	IntroductionForests, trees, and spanning subtreesRealization conditionsEquivalent networksNetwork synthesisReferences	IntroductionForests, trees, and spanning subtreesRealization conditionsEquivalent networksNetwork synthesisReferences	Introduction <td< td=""><td>Introduction<td< td=""><td>Introduction . <t< td=""><td>Introduction<td< td=""></td<></td></t<></td></td<></td></td<>	Introduction <td< td=""><td>Introduction . <t< td=""><td>Introduction<td< td=""></td<></td></t<></td></td<>	Introduction . <t< td=""><td>Introduction<td< td=""></td<></td></t<>	Introduction <td< td=""></td<>