Contents

1.	Mat	hematical Models of Weighted Monte Carlo Methods	1		
	1.1	Simple Facts from Functional Analysis	1		
	1.2	Simple Facts from Convergence Theory			
		for Random Functions	6		
	1.3	Integral Equations of the Transfer Theory			
		and Monte Carlo Methods	8		
	1.4	Other Integral Equations Solved			
		by Monte Carlo Methods	17		
	1.5	Monte Carlo Methods for Calculating Integrals	29		
	1.6	Unbiasedness and Variance of Monte Carlo Methods	33		
	1.7	Weighted Estimates for Bilinear Functionals	38		
	1.8	Calculation of the Derivatives of the Linear Functionals			
		and the Weak Convergence of the Functional Estimates	41		
2.	Using Information About the Solution				
	2.1	Importance Sampling Technique	47		
	2.2	Weighted Path Estimates in the Transfer Theory	50		
	2.3	Estimation of the Variance $D\xi_x$			
		for Importance Sampling Technique	53		
	2.4	Using the Asymptotic Solution to the One-Velocity Transfer			
		Equation	56		
3.	Nonlinear Theory of Optimization				
	for S	Solving Integral Equations	61		
	31	Formulation of the Problem	61		
	32	Investigation of the Master Fountion	64		
	3.3	A Model Problem	68		
	3.4	Asymptotic Optimization of the Badiative Transfer	60		
	3.5	Asymptotic Optimization in a Special Class of Densities	73		
	3.6	Minimization of the Variance of the Collision Estimates	80		
	0.0		00		
4.	Minimax Weighted Estimates				
	4.1	Statement of the Problem. The Basic Lemma	87		
	4.2	The Minimax Estimates for the Integrals	89		
	4.3	Optimization of Estimates for the Integral Equations	93		
	4.4	Minimax Choice of the First Step in the Markov Chain	97		

5.	Vecto	or Monte Carlo Algorithms	99
	5.1	Variance Vector Algorithms	99
	5.2	Uniform Optimization of Weighted Monte Carlo Estimates	
		in the Transfer Theory	103
	5.3	Vector Algorithm Related to a Stratified Sampling	
		with Respect to One Variable	106
	5.4	Accuracy of the Monte Carlo Method for Solving the Vector	
		Transfer Equation	112
	5.5	Vector Estimates for Triangular Matrix Kernel	116
	5.6	Vector Estimates for the Resolvent Iterations	118
	5.7	Vector Representations of Bilinear Estimates	122
	5.8	Vector Algorithm for Evaluating	
		the Effective Fission Coefficient	125
	5.9	Variance Reduction for the Vector Estimates	126
	5.10	Asymptotic Investigation of a Monte Carlo Method	
		Combined with the Method of Finite Sums	132
_			
6.	Rand	lomization of Weighted Algorithms	137
	6.1	Randomized Estimation for Statistical Moments	
		of the Solution	137
	6.2	Lower Bound of the Variance.	
		Averaging Exponential Kernels	141
	6.3	Special Models of Non-Gaussian Random Fields	
		Related to Stationary Point Fluxes	145
	6.4	Simulation of Homogeneous Gaussian Fields	
		by Randomization of the Spectral Representation	152
	6.5	Stochastic Problems of Radiative Transfer Theory	156
	6.6	A Stochastic Elasticity Problem	160
	6.7	Simulation of Admixture Diffusion	
		in Stochastic Velocity Fields	161
7	The	Mathad of Multiple Splitting	165
"	THE .		100
	7.1	Optimization of the Splitting Method	165
	7.2	Optimization of the Splitting Technique for Calculating	
		the Transmission Probability	167
	7.3	Numerical Calculation of the Optimal Splitting Parameters	169
	7.4	Uniform Optimization of the Splitting Method	170
	7.5	Randomized Splitting Method	172
	7.6	Splitting of the Collision Estimate	172
8.	Tran	sformation of Equations and Weighted Estimates	177
	8.1	The Averaging Transformation	177
	8.2	Translations	180
	8.3	Some Relations Between the Variances	185
	8.4	Notions on the Functional Convergence of the Estimates	187

х

9.	Mont	e Carlo Methods and Perturbation Theory	189
	9.1	Vector Weighted Monte Carlo Methods	189
	9.2	Differentiation of Integral Equations	
		with Respect to a Parameter	191
	9.3	Calculation of Perturbations	1 96
	9.4	Calculation of Derivatives	198
	9.5	Calculation of Perturbations in the Transfer Theory	200
	9.6	Calculation of Derivatives of Solutions to Boundary Value	
		Problems by the Monte Carlo Method	201
Ap	pendi	x. Models of Random Variables	205
	A.1	Simulation of Random Variables	205
	A.2	Simulation of Random Vectors	208
Re	ferenc	es	217
Sul	o ject l	index	223

•