Contents

1	Some	e Mathematical Foundations of Quantum Mechanics	1
	1.1	Ontology	2
	1.2	The Wave Function and Born's Statistical Hypothesis	3
	1.3	The Spreading of the Wave Packet	5
	1.4	No Mystery: The Double-Slit Experiment	9
	1.5	The Importance of Configuration Space	12
	1.6	The Classical Limit	17
		1.6.1 Motion of Concentrated Wave Packets	18
	1.7	Spin and the Stern-Gerlach Experiment	21
		1.7.1 The Pauli Equation and the Stern–Gerlach	
		Experiment	24
	1.8	Why "Spinors"?	27
	1.9	Hilbert Space and Observables	33
2	The Measurement Problem		
	2.1	The Orthodox Answer	40
	2.2	Solutions to the Measurement Problem	41
		2.2.1 The Negation of (1) Leads to Bohmian Mechanics	41
		2.2.2 The Negation of (2) Leads to Collapse Theories	
		Such As GRW	42
		2.2.3 The Negation of (3) Leads to the Many Worlds	
		Theory	42
	2.3	Other Alternatives?	43
	2.4	The Measurement Problem and Born's Statistical Hypothesis	44
	2.5	Decoherence	46
	2.6	The Ontology of Quantum Mechanics	47
3	Chan	ce in Physics	49
	3.1	Typicality	50
	3.2	Small Causes, Large Effects	52
	3.3	Coarse Graining and Typicality Measures	52
	3.4	The Law of Large Numbers	58

	3.5	Typicality in the Continuum	61
		3.5.1 Newtonian Mechanics in Hamiltonian Form	62
		3.5.2 Continuity Equation and Typicality Measure	65
		3.5.3 Typicality and the Statistical Hypothesis	69
4	Boh	mian Mechanics	75
	4.1.	From the Universe to Subsystems	82
	4.2	Typicality Analysis and Born's Statistical Interpretation	86
	4.3	Heisenberg's Uncertainty	94
	4.4	Identical Particles and Topology	96
5	Coll	apse Theory	105
•	5.1	GRW Theory	107
	5.2	Spontaneous Localization	108
	5.3	Remarks About Collapse Theories	114
		-	117
6	The	Many Worlds Theory	117
	6.1	Finding the World(s) in the Wave Function	119
		6.1.1 Everett Versus Bohm	120
	6.2	Probabilities in the Many Worlds Theory	121
		6.2.1 Everett's Typicality Argument	123
	6.3	Many Worlds: A Brief Assessment	125
7	The	Measurement Process and Observables	127
	7.1	Ideal Measurements: PVMs	128
	7.2	PVMs and POVMs in General	137
	7.3	It Is Theory that Decides What Is Observable	143
8	Weal	k Measurements of Trajectories	149
	8.1	On the (Im)-Possibility of Measuring the Velocity	155
	8.2	Surrealistic Trajectories?	156
	8.3	Wheeler's Delayed-Choice Experiment	160
9	Hidd	len Variables	161
	9.1	Joint Measurements of Observables	164
	9.2	Two Assertions About Hidden Variables	168
	7.2	9.2.1 Von Neumann's Theorem	168
		9.2.2 The Kochen-Specker Theorem	168
	9.3	Contextuality	170
		•	-
10		ocality	173
	10.1	The EPR Argument	174
	10.2	Bell Inequality	176
	10.3	Implications and Misunderstandings	179
	10.4	CHSH Inequality and the Generalized Bell Theorem	181
		10.4.1 Derivation of the CHSH Inequality	187
	10.5	Nonlocality and Faster-than-Light Signaling	189

11	Relat	ivistic Quantum Theory	193
	11.1	Difficulties of "First" and "Second" Class	194
		11,1.1 Infinite Mass	194
		11.1.2 Infinite Pair Creation	196
	11.2	Field Ontology: What Exactly Is It?	201
	11.3	Fermionic Fock Space	205
		11.3.1 Particles and Antiparticles	208
		11.3.2 Fock Space as the Dirac Sea	209
	11.4	Multi-Time Wave Function	211
		11.4.1 Time Evolution	214
12	Furth	ner Food for Thought	217
	12.1	Many Worlds Interpretation of Relativistic Quantum	
		Mechanics	218
	12.2	Relativistic Bohm-Dirac Theory	221
	12.3	Nonlocality Through Retrocausality	224
	12.4	Bohmian "Big Bang" Model	227
	12.5	Relativistic GRW Theory	228
13	Epilo	gue	231
Index			235