Table of Contents

ABSTRACT
ZUSAMMENFASSUNG
Chapter 1- Introduction
1.1 Hematologic malignancies10
1.1.1 Acute Lymphoblastic Leukemia10
1.1.2 Multiple Myeloma
1.2 B cell development from hematopoietic progenitors
1.3 IL-7 receptor signaling pathway14
1.4 RAS signaling pathway16
1.4.1 RAS structure
1.4.2 RAS regulation
1.4.3 RAS effectors
1.4.4 Targeting the RAS effector signaling pathway as a promising therapeutic avenue23
1.5 Proteostasis in cancer
1.5.1 Unfolded Protein Response
1.5.2 IRE1a-XBP1 axis
1.5.3 The role of the IRE1α-XBP1 signaling in cancer
1.5.4 Ubiquitin-proteasome system
1.5.5 Autophagy
1.5.6 Autophagy as a therapeutic target in cancer
Chapter 2-Materials and Methods
2.1 Human cell culture
2.2 Murine cell culture
2.3 Bacterial cell culture
2.4 Cloning and plasmid construction
2.4.1 Isolation of plasmid DNA from E. coli
2.4.2 Polymerase chain reaction
2.4.3 Agarose gel electrophoresis
2.4.4 DNA restriction digestion
2.4.5 DNA ligation
2.4.6 DNA sequencing

2.4.7 Transformation of E. coli.	40
2.4.8 Bacterial glycerol stock	40
2.4.9 Isolation of plasmid DNA	41
2.5 Calcium phosphate transfection of platinum-E for virus production	41
2.6 Mouse model of human pre-B NRAS ^{G12D} ALL	42
2.6.1 Isolation of genomic DNA from mouse tails for genotyping	43
2.6.2 Genotyping	43
2.6.3 Harvesting bone marrow from femurs and tibiae	44
2.6.4 Retroviral transduction	45
2.6.5 Inducible deletion of the Xbp1 floxed gene	46
2.7 Flow Cytometry analysis	46
2.7.1 Cell viability measurement	46
2.7.2 Apoptosis assay	47
2.7.3 Cell cycle assay	47
2.7.4 Immunophenotyping	48
2.8 Western blotting	49
2.8.1 Protein extraction	49
2.8.2 Determination protein concentration by Bradford assay	49
2.8.3 SDS-PAGE (SDS polyacrylamide gel electrophoresis)	50
2.8.4 Western blotting and immunological detection of protein	50
2.8.5 Stripping the membranes	51
2.9 Gene expression analysis	52
2.9.1 RNA extraction	52
2.9.2 cDNA synthesis	53
2.9.3 RT-qPCR	54
Chapter 3-Results	57
Project I: Interplay between PI3K/AKT signaling and IRE1a-XBP1 promotes survival of pre-B NRAS ^{G12D} ALL cells and targeting XBP1 in pre-B ALL sensitizes cells to PI3K/mTOR inhibitors	58
Aim of the study	58
3.1.1 Interleukin-7 is a pivotal cytokine for survival of pre-B NRAS ^{G12D} ALL cells	59
3.1.2 Targeting the IL-7 signaling pathway activates the Ras-Erk signaling pathway in NRAS ^{GE} pre-B ALL	
3.1.3 XBP1 promotes pre-B cell acute lymphoblastic leukemia through the IL-7 receptor signali pathway	
3.1.4 Pharmacological inhibition of <i>Xbp1</i> splicing with MKC8866 is as efficient as genetic loss <i>Xbp1</i> in NRAS ^{G12D} mutated ALL.	of
-	

3.1.5 Dual PI3K/MTOR inhibitor has synergistic effect with MKC-8866 against NRAS ^{G12D} pre-B ALL cells
Project II: Proteostasis: Crosstalk between Proteasomes, Autophagy and UPR in Multiple Myeloma 80
Aim of the study
3.2.1 The effect of the Proteasome Inhibitor Ixazomib (MLN9708) and UPR mediated therapy in Multiple Myeloma cells and their bone marrow niche
3.2.1.1 Ixazomib strongly reduces cell viability of multiple myeloma cells in combination with IRE1 α inhibitors
3.2.1.2 Ixazomib in combination with IRE1α inhibitors slightly increase apoptosis and cause cell cycle arrest in multiple myeloma cells
3.2.1.3 XBP1s expression is induced by ixazomib treatment under support of MSCs cells
3.2.2 The effect of the Proteasome Inhibitor ixazomib (MLN9708) and autophagy-mediated cell death in multiple myeloma cells
3.2.2.1 Ixazomib in combination with autophagy inhibitors strongly induces apoptosis in MM cells
3.2.2.2 Cytotoxicity induced by ixazomib in combination with autophagy inhibitors is mediated via JNK activation
Chapter 4-Discussion
Part I: Interplay between PI3K/AKT signaling and IRE1a-XBP1 promotes survival of pre-B NRAS ^{G12D} ALL cells and targeting XBP1 in pre-B ALL sensitizes cells to PI3K/mTOR inhibitors95
4.1 IRE1α-XBP1 mediated signaling contributes to oncogenic RAS signaling in pre-B cell acute lymphoblastic leukemia (ALL)
4.1.1 The IL-7 receptor signaling pathway counteracts the RAS signaling pathway in pre-B NRAS ^{G12D} ALL cells
4.1.2 Activation of the UPR positively correlates with Ras-ERK signaling in pre-B NRAS ^{G12D} ALL cells and supports the survival of ALL cells upon activation NRAS ^{G12D}
4.1.3 XBP1 promotes survival and proliferation of pre-B ALL cells through the IL-7 receptor signaling pathway
4.1.4 Pharmacological inhibition of XBP1 activation with MKC-8866 synergistically reduced viability of pre-B ALL cells in combination with PI3K/mTOR inhibitor BEZ235
4.1.5 XBP1 signaling and its cooperation with IL-7 receptor and RAS signaling pathways in pre-B ALL
4.1.6 Conclusion and future perspective 104
Part II: Proteostasis: crosstalk between proteasomes, autophagy and UPR in multiple myeloma
4.2 Targeting the proteostasis network as a therapeutic strategy in multiple myeloma
4.2.1 Mechanism of antitumor activity of proteasome inhibitor ixazomib and UPR in multiple myeloma
4.2.2 Interplay between proteasome pathway and autophagy generates protective effects against of cytotoxic effect of ixazomib in multiple myeloma

4.2.3 Crosstalk between ubiquitin-proteasome system, autophagy and UPR in multiple	myeloma.110
4.2.4 Conclusion and future perspective	
Supplementary Data	
APPENDIX:	
I: Abbreviations	116
II: Abbreviations	119
References	121
Acknowledgment	
Publications	136
Eidesstattliche Erklärung	137