Contents

7	Ge	netic Polymorphisms	1
	1.1	Genetic and Molecular Background	2
		Genotype and Phenotype	2
		Gene Expression	2
	1.2	Major Types of Polymorphisms	5
		DNA Polymorphisms	5
		Utility of DNA Polymorphisms	7
	1.3	Allele and Genotype Frequencies	8
	1.4	Populations and Models	11
		Models	11
		Utility of Mathematical Models	13
		Discrete-Time Models	13
		Continuous-Time Models	15
		How Models are Tweaked	16
2	Org	ganization of Genetic Variation	21
	2.1	Random Mating	21
		The Hardy-Weinberg Principle	22
		Constancy of Allele Frequencies	23
		Chi-square Test for Hardy-Weinberg Equilibrium	24
		Statistical Power of the Chi-square Test for Hardy-Weinberg Equilibrium	26
		Recessive Alleles Hidden in Heterozygotes	28
		Multiple Alleles and DNA Typing	29
		X-Linked Genes	31
	2.3	Multiple Loci: Linkage and Linkage Disequilibrium	33
		Linkage Disequilibrium, Genetic Associations, and the Problem	27
		of Multiple Comparisons	37
	2.4	Linkage Disequilibrium in Natural Populations	38
		Linkage Disequilibrium as a Correlation Between Alleles of Different Genes in Gametes	39
		Linkage Disequilibrium Due to Population Admixture	41
		Wahlund's Principle	42
3	Inb	reeding and Population Structure	47
		Genotype Frequencies with Inbreeding	47
		The Inbreeding Coefficient	49
		Inbreeding Depression and Heterosis	51
		Effects of Inbreeding on Rare Harmful Alleles	52
		Inbreeding Effects in Human Populations	53

CONTENTS

	3.3	Calculation of the Inbreeding Coefficient from Pedigrees	54
	3.4	Regular Systems of Mating	57
		Partial Selfing	58
		Repeated Sib Mating	59
		Recombinant Inbred Lines	61
	3.5	Remote Inbreeding in Finite Populations	62
		Identity by Descent in Finite Populations	63
		Decreased Heterozygosity in Admixed Populations	65
		Hierarchical Population Structure	68
		Mating Between Relatives in a Structured Population	70
4	Mu	tation, Gene Conversion, and Migration	75
	4.1	Mutation	75
		Irreversible Mutation	76
		Reversible Mutation	77
		Gene Duplication and Functional Divergence	78
		Equilibrium Heterozygosity with Mutation	81
	4.2	The Coalescent	82
		Coalescence in the Wright-Fisher Model	83
		Nucleotide Polymorphism	85
		Nucleotide Diversity	86
		Estimating θ and π from Sequence Data	86
		The Moran Model	88
		Effective Population Number	90
	4.3	Gene Conversion	94
		Biased Gene Conversion	94
		A Model of Biased Gene Conversion	95
	4.4	Migration	97
		Models of Migration	97
		One-Way Migration	98
		The Island Model of Migration	98
		How Migration Limits Genetic Divergence	99
		The Fixation Index F _{ST} in Relation to Coalescence	101
		Stepping-Stone Models	103
5	Na	tural Selection in Large Populations	109
	5.1	Selection in Haploids	109
		Continuous-Time Model of Haploid Selection	109
		Discrete-Generation Model of Haploid Selection	111
	5.2	Selection in Diploids	112
		Directional Selection	112
		Time Required for Changes in Allele Frequency	115
		Selective Sweeps: Hard Sweeps and Soft Sweeps	117
		Probability of Survival of a Favorable Mutation	118
		Overdominance and Heterozygote Inferiority	121
		Evolutionary Change in Fitness	125

	5.3	Mutation-Selection Balance	126
		Equilibrium Allele Frequencies for Recessive and Partially Dominant Mutations	127
		Degree of Dominance of Severely Versus Mildly Deleterious Mutations	128
		Background Selection	129
		Balance Between Migration and Selection	131
	5.4	Gametic Selection and Meiotic Drive	132
		Gametic Selection	133
		Meiotic Drive	134
		Gene Drive	135
	5.5	Other Modes of Selection	137
6	Rai	ndom Genetic Drift in Small Populations	147
	6.1	Differentiation of Subpopulations Under Random Drift	147
		Random Drift in Small Experimental Populations	148
		The Probability Process Underlying the Wright-Fisher Model	149
		Transition Matrix for the Moran Model	151
		Change in Average Allele Frequency Among Subpopulations	152
		Decrease in Average Heterozygosity Among Subpopulations	154
	6.2	Diffusion Approximations	155
		The Forward Equation: An Approach Looking Forward in Time	156
		The Backward Equation: Musing on the First Step	159
	6.3	Fixation Probabilities and Times to Fixation	159
		Probability of Fixation	160
		Times to Fixation or Loss	162
	6.4	Equilibrium Distributions of Allele Frequency	164
		An Equation for the Stationary Distribution	164
		Reversible Mutation	165
		Multiple Alleles and the Ewens Sampling Formula	167
		Migration	169
		Mutation-Selection Balance	170
		Protein Polymorphisms	171
7	Мо	lecular Population Genetics	179
	7.1	Rates of Nucleotide Substitution	180
		Nucleotide Substitutions in Noncoding DNA	180
		Synonymous and Nonsynonymous Substitutions	182
		Nucleotide Divergence Between Species	182
		Correction for Multiple Mutational Hits	184
		Amino Acid Divergence Between Species	186
		Molecular Clockwork	187
	7.2	Analysis of the Site Frequency Spectrum	189
		The Unfolded Site Frequency Spectrum	189
		The Folded Site Frequency Spectrum	193
		Codon Usage Bias	194
		Selection for Ontimal Codons and Amino Acids	195

CONTENTS

	7.3	Polymorphism and Divergence	197
		The McDonald-Kreitman Test	197
		Refinements of the McDonald-Kreitman Test	200
		Polymorphism and Divergence as a Poisson Random Field	201
		The Hudson-Kreitman-Aguadé Test	204
		Neutrality Versus Selection: An Emerging Consensus	205
	7.4	Demographic History	206
		Changes in Population Size Through Time	206
		Population Splits and Fusions	207
		Estimating Parameters in Demographic Models	208
	7.5	Ancient DNA in Studies of Human Populations	209
		Human Origins	209
		Technical Challenges of Ancient DNA	210
		Insights into Human History from Ancient DNA	210
	7.6	Transposable Elements	213
		Insertion Sequences and Transposons in Bacteria	214
		Transposable Elements in Eukaryotes	215
8	Poj	oulation Genetics of Complex Traits	225
		Phenotypic Variation in Complex Traits	225
		Three Types of Complex Traits	226
		Phenotypic Variation	226
		Properties of the Normal Distribution	227
	8.2	Genes and Environment	229
		Genotypic Variance and Environmental Variance	230
		Broad-Sense Heritability	231
		Genotype-by-Environment and Other Interactions	232
		Genetic Effects on Complex Traits	233
		Components of Genotypic Variation	234
		Physiological Epistasis Versus Statistical Epistasis	236
	8.3	Artificial Selection	238
		Prediction Equation for Individual Selection	240
		Intensity of Selection	242
		Genetic Basis of the Prediction Equation	243
		Change in Mean Phenotype from One Generation of Selection	245
		Effect of Selection on a Constituent Locus of a Complex Trait	246
		Genomic Selection	247
		Correlated Response to Selection	248
	8.4	Resemblance Between Relatives	249
		Parent-Offspring Covariance	249
		Covariance Between Relatives	250
		Heritability Estimates from Covariance	251
		Heritability Estimates from Regression	251
	8.5	Complex Traits with Discrete Expression	253
		Threshold Traits: Genes as Risk Factors	253
		Heritability of Liability	253
		Applications to Human Disease	256

CONTENTS

9 Cc	omplex Traits in Natural Populations	263
9.1	Genetic Variation and Phenotypic Evolution	263
	Mutational Variance and Standing Variance	264
	Phenotypic Evolution Under Directional Selection	265
	Phenotypic Evolution Under Stabilizing Selection	267
9.2	Searching for the Genes Affecting Complex Traits	269
	Quantitative Trait Loci	269
	Candidate Genes	272
	Genome-Wide Association Studies	274
	Number of Genes and Magnitude of Effects	275
	Genetic and Environmental Risk Factors in Complex Traits	277
9.3	Complex Traits in Evolutionary Adaptation	278
	Evolutionary Pathways of Drug Resistance	279
	Genomic Changes Under Domestication	280
	Local Selection Versus Gene Flow	281
9.4	Complex Traits in Speciation	281
	Reinforcement of Mating Barriers	282
	Reproducibility of Phenotypic and Genetic Changes in Speciation	282
	Accumulation of Genetic Incompatibilities	283
Index		291