Contents

1	Introduction			
	Notes and	References	20	
2	Manifolds,	Vectorfields, Lie Brackets, Distributions	23	
	2.0 Surve	y of Section 2.1	24	
	2.1 Manif	olds, Coordinate Transformations, Tangent Space	29	
	2.1.1	Differentiability, Manifolds, Submanifolds	29	
	2.1.2	Tangent Vectors, Tangent Space, Tangent Mappings	37	
	2.2 Vecto	rfields, Lie Brackets, Distributions, Frobenius'		
	Theor	em, Differential One-Forms	43	
	2.2.1	Vectorfields, Lie Brackets, Lie Algebras	43	
	2.2.2	Distributions, Frobenius' Theorem	55	
	2.2.3	Cotangent Bundle, Differential One-Forms,		
		Co-distributions	61	
	2.3 Summa	ry of Section 2.2	67	
	Notes and	References	69	
	Exercises		70	
3	Controllab	ility and Observability, Local Decompositions	73	
	3.1 Contr	ollability	73	
	3.2 Obser	vability	93	
	3.3 Invar	iant Distributions; Local Decompositions	101	
	Notes and	References	111	
	Exercises		113	
4	Input-Outp	ut Representations	117	
	4.1 Wiene	r-Volterra and Fliess Series Expansion	118	
	4.2 Exter	nal Differential Representations	125	
	4.3 Outpu	t Invariance	135	
	Notes and	References	143	
	Exercises		145	
5	State Spac	e Transformation and Feedback	148	
	5.1 State	Space Transformations and Equivalence to		
	Linea	r Systems	148	
	5.2 Stati	c and Dynamic Feedback	165	
Notes and References		References	172	
	Exercises		173	

6	Feedback Linearization of Nonlinear Systems	176			
	6.1 Geometric Conditions for Feedback Linearization	178			
	6.2 Computational Aspects of Feedback Linearization	194			
	Notes and References	205			
	Exercises	207			
7	Controlled Invariant Distribution and the				
	Disturbance Decoupling Problem				
	7.1 Controlled Invariant Distributions	211			
	7.2 The Disturbance Decoupling Problem	219			
	Notes and References	237			
	Exercises	239			
8	The Input-Output Decoupling Problem	242			
	8.1 Static State Feedback Input-Output Decoupling				
	for Analytic Systems	242			
	8.2 Dynamic State Feedback Input-Output Decoupling	255			
	Notes and References	270			
	Exercises				
9	The Input-Output Decoupling Problem:	274			
	Geometric Considerations				
	9.1 The Block Input-Output Decoupling Problem for Smooth				
	Nonlinear Systems	274			
	9.2 The Formal Structure at Infinity and				
	Input-Output Decoupling	286			
	Notes and References	294			
	Exercises	296			
10	Local Stability and Stabilization of Nonlinear Systems	299			
	10.1 Local Stability and Local Stabilization via				
	Linearization	299			
	10.2 Local Stabilization using Lyapunov's Direct Method	303			
	10.3 Local Stabilization via Center Manifold Theory	310 319			
	Notes and References				
	Exercises	321			
11	Controlled Invariant Submanifolds and	•			
	Nonlinear Zero Dynamics	323			
	11.1 Locally Controlled Invariant Submanifolds	323			
	11.2 Constrained Dynamics and Zero Dynamics	331			
	11 3 Interconnection of Systems and Inverse Systems	337			

	x iii
Notes and References	344
Exercises	346
12 Mechanical Nonlinear Control Systems	349
12.1 Definition of a Hamiltonian Control System	355
12.2 Controllability and Observability;	
Local Decompositions	363
12.3 Stabilization of Hamiltonian Control Systems	369
12.4 Constrained Hamiltonian Dynamics	376
12.5 Conservation Laws and Reduction of Order	385
Notes and References	392
Exercises	394
13 Controlled Invariance and Decoupling for	
General Nonlinear Systems	400
13.1 Locally Controlled Invariant Distributions	400
13.2 Disturbance Decoupling	414
13.3 Input-Output Decoupling	416
13.4 Locally Controlled Invariant Submanifolds	422
13.5 Control Systems Defined on Fiber Bundles	426
Notes and References	431
Exercises	433
14 Discrete-Time Nonlinear Control Systems	437
14.1 Feedback Linearization of Discrete-Time	
Nonlinear Systems	438
14.2 Controlled Invariant Distributions and the	

Disturbance Decoupling Problem in Discrete-Time

14.3 Input-Output Decoupling in Discrete-Time

Notes and References

Exercises

Subject Index

445

451

459

461

463