Tongwen Chen and Bruce Francis

Optimal Sampled-Data Control Systems

With 222 Figures

London Berlin Heidelberg New York Paris Tokyo Hong Kong Barcelona Budapest

Contents

1	Inti	oduction	1							
	1.1	Sampled-Data Systems	1							
	1.2	Approaches to SD Controller Design	8							
	1.3	Notation	10							
		Exercises	13							
		Notes and References	15							
Ι	In	direct Design Methods	17							
2	Overview of Continuous-Time \mathcal{H}_2 - and \mathcal{H}_{∞} -Optimal Control									
	2.1	Norms for Signals and Systems	19							
	2.2	\mathcal{H}_2 -Optimal Control	22							
	2.3	\mathcal{H}_{∞} -Optimal Control	29							
		Notes and References	32							
3	Discretization									
	3.1	Step-Invariant Transformation	33							
	3.2	Effect of Sampling	39							
	3.3	Step-Invariant Transformation Continued	44							
	3.4	Bilinear Transformation	53							
	3.5	Discretization Error	54							
		Exercises	59							
		Notes and References	64							
4	Discrete-Time Systems: Basic Concepts									
	4.1	Time-Domain Models	65							
	4.2	Frequency-Domain Models	69							
	4.3	Norms	72							
	4.4	Multivariable Systems	78							
	4.5	Function Spaces	83							

	4.6	Optimal Discretization of Analog Systems	88
		Exercises	90
		Notes and References	94
5	Dis	crete-Time Feedback Systems	95
	5.1	Connecting Subsystems	95
	5.2	Observer-Based Controllers	97
	5.3	Stabilization	103
	5.4	All Stabilizing Controllers	106
	5.5	Step Tracking	111
		Exercises	115
		Notes and References	120
6	Dis	crete-Time \mathcal{H}_{2} -Optimal Control	121
U	61	The LOB Problem	121
	62	Symplectic Pair and Generalized Eigenproblem	128
	6.3	Symplectic Pair and Riccati Equation	131
	6.4	State Feedback and Disturbance Feedforward	138
	6.5	Output Feedback	143
	6.6	\mathcal{H}_2 -Optimal Step Tracking	152
	6.7	Transfer Function Approach	160
	0	Exercises	163
		Notes and References	169
7	Tnti	reduction to Discrete-Time \mathcal{H}_{-} Optimal Control	171
•	7 1	Computing the \mathcal{H}_{\sim} -Norm	171
	79	Discrete Time \mathcal{H}_{∞} -Optimization by Bilinear Transformation	176
	1.2	Exercises	180
		Notes and References	181
6	D	t Discustion of CD Fronth on Sustained	109
ð	ras 01	Lifting Discretization of SD Feedback Systems	100
	0.1	Lifting Discrete-Time Signals	100
	0.4	East Discrete-Time Systems	196
	0.0	Pasign Examples	100
	0.4 8 K	Simulation of SD Systems	190 201
	0.0		201
		Notes and References	200
			200

•

.

II Direct SD Design

9	Proj	perties of S and H	209
	9.1	Review of Input-Output Stability of LTI Systems	209
	9.2	M. Riesz Convexity Theorem	210
	9.3	Boundedness of S and H	211
	9.4	Performance Recovery	216
		Exercises	219
		Notes and References	220
10	Con	tinuous Lifting	221
	10.1	Lifting Continuous-Time Signals	221
	10.2	Lifting Open-Loop Systems	223
	10.3	Lifting SD Feedback Systems	227
	10.4	Adjoint Operators	229
	10.5	The Norm of SG	232
	10.6	The Norm of GH	237
	10.7	Analysis of Sensor Noise Effect	239
		Exercises	242
		Notes and References	245
	C4 - 1	With an I may I in a in SD S actions	0.47
11	Stat	L toward Ct 1 life	247
	11.1	Internal Stability	247
	11.2	Input-Output Stability	252
	11.3		258
	11.4	Step Tracking	262
	11.5	Digital Implementation and Step Tracking	267
	11.6	Tracking Other Signals	271
		Exercises	276
		Notes and References	279
12	Hor	Ontimal SD Control	281
	121	A Simple \mathcal{H}_2 SD Problem	281
	12.1	Generalized \mathcal{H}_0 Measure for Periodic Systems	201
	12.2	Generalized \mathcal{H}_2 SD Problem	201
	12.0	Framplee	201
	12.7	Examples	302
		Notes and References	307
			301
13	\mathcal{H}_{∞}	Optimal SD Control	309
	13.1	Frequency Response	310
	13.2	\mathcal{H}_{∞} -Norm in the Frequency Domain	313
	13.3	\mathcal{H}_{∞} -Norm Characterization	316
	13.4	\mathcal{H}_{∞} Discretization of SD Systems	317
	13.5	Computing the $\mathcal{L}_2[0,h)$ -Induced Norm	320

207

	13.6	Computing the Matrices in G_{eq} ,	, d	 •						•		326
	13.7	\mathcal{H}_{∞} SD Analysis										336
	13.8	\mathcal{H}_{∞} SD Synthesis										341
		Exercises										345
		Notes and References					•	•				347
A	Stat	e Models										349
Bi	bliog	raphy										357
In	lex											369

•