Contents

1	Intro	duction	1
	1.1	What Is Desingularization?	1
	1.2	Very Short History of Desingularization	2
	1.3	How Did we Start?	3
	1.4	Summary	4
	1.5	Conventions and Concluding Remarks	13
2	Basi	c Invariants for Singularities	15
	2.1	Invariants of Graded Rings and Homogeneous Ideals in	
		Polynomial Rings	15
	2.2	Invariants for Local Rings	21
	2.3	Invariants for Schemes	25
3	Pern	nissible Blow-Ups	37
4	B-Pe	ermissible Blow-Ups: The Embedded Case	49
5	B-P	ermissible Blow-Ups: The Non-embedded Case	65
6	Main Theorems and Strategy for Their Proofs		
7	(u)-standard Bases		
8	Characteristic Polyhedra of $J \subset R$		
9	Transformation of Standard Bases Under Blow-Ups 1		
10	Terr	nination of the Fundamental Sequences of B-Permissible	
10	Blov	v-Ups, and the Case $e_x(X) = 1$	145
11	Add	itional Invariants in the Case $e_x(X) = 2$	155
12	Pro	of in the Case $e_x(X) = es_x(X) = 2$, I: Some Key Lemmas	161
13	Proof in the Case $e_x(X) = \overline{e}_x(X) = 2$, II: Separable Residue		
	Ext	ensions	167

.

14	Proof Exter	in the Case $e_x(X) = e_x(X) = 2$, III: Inseparable Residue usions	175	
15	Non-	existence of Maximal Contact in Dimension 2	191	
16	An A	Iternative Proof of Theorem 6.17	201	
17	Funct and S	toriality, Locally Noetherian Schemes, Algebraic Spaces Stacks	205	
18	Арре	ndix by B. Schober: Hironaka's Characteristic		
	Polyh	edron. Notes for Novices	211	
	18.1	Introduction	211	
	18.2	The Newton Polyhedron of an Ideal	216	
	18.3	The Projected Polyhedron and Its Relation to the Newton		
	10.5	Polyhedron	221	
	18/	The Directrix and Its Role: Choosing (u)	228	
	10.4	Determining the Characteristic Polyhedron: Optimizing the		
	10.5	Choice of $(f \cdot y)$	233	
	10 6	Inversion to from the Polyhedron and the Effect of Blowing Up	238	
	18.0	Invariants from the Polyhedron and the Effect of Drowing op the		
Ref	References			
Ind	Index			

viii