Contents

	List	of Figures	page x
	Preface		
1	Intro	oduction and Overview	1
	1.1	Brain Enthusiasm: The Relevance of Distinguishing Fact from Fiction	2
	1.2	The Basis of Neural Signals	4
		1.2.1 Information Transfer in Neurons	7
		1.2.2 Signal Processing	10
		1.2.3 Other Signals in the Brain: Molecular and Hemodynamic Signals	13
		1.2.4 Maps in the Brain: From the Activity of Single Neurons to	
		Signals without Single-Neuron Resolution	15
	1.3	A Short Overview of Methods in Human Neuroscience	18
		1.3.1 Techniques to Measure Brain Structure	19
		1.3.2 Techniques to Measure Hemodynamic Correlates of Neural	
		Activity	20
		1.3.3 Techniques to Measure Electrophysiological Activity	22
	Part	t I Structural Neuroimaging	29
2	The	Physics behind Magnetic Resonance Imaging (MRI)	31
	2.1	The Effect of Magnetic Fields on the Human Body	32
	2.2	From Resonance to Imaging	35
	2.3	How Do These Physical Principles Give Rise to an Image with	
		Anatomical Structure?	40
	2.4	The Hardware of a Scanner	42
	2.5	Parameters That Are Chosen by the User	45
3	Stru	ctural Imaging Methods	48
	3.1	Structural T1-Weighted MRI	49
		3.1.1 Quality Check	49
		3.1.2 Finding Structure in Anatomical Images and Normalization	50
		3.1.3 Approaches to Investigate Brain Morphometry	56
		3.1.4 Statistical Analysis and Interpretation	57
		3.1.5 Voxel-Based Lesion-Symptom Mapping	58
		3.1.6 The Relevance of Brain Structure for Behavior and Mind	58
	3.2	Diffusion Tensor Imaging (DTI)	61
		3.2.1 Data Acquisition	62
		3.2.2 Data Analysis	64

		3.2.3 The Relevance of Anatomical Connectivity for Behavior	
		and Mind	67
	3.3	Magnetic Resonance Spectroscopy (MRS)	68
	0.0	3.3.1 Data Acquisition	69
		3.3.2 Data Analysis	72
		3.3.3 The Relevance of Molecular Indices for Behavior and Mind	73
	Part	II Hemodynamic Neuroimaging	77
4	Herr	odynamic Imaging Methods	79
	4.1	Hemodynamics and Its Relationship to Neural Activity	81
		4.1.1 The Hemodynamic Response Function	81
		4.1.2 The Relationship between the HRF and Different Aspects of	
		Neural Activity	84
	4.2	Functional Magnetic Resonance Imaging (fMRI)	88
		4.2.1 Blood-Oxygenation-Level Dependent fMRI	89
		4.2.2 Arterial Spin Labeling fMRI	91
		4.2.3 The Relevance of fMRI for Behavior	92
	4.3	Positron Emission Tomography (PET)	92
		4.3.1 The Physics of PET	93
		4.3.2 Using PET for Measuring Neural Activity	94
		4.3.3 Unique Contributions of PET	95
	4.4	Functional Near-Infrared Spectroscopy (fNIRS)	96
	4.5	A Comparison of Research with fMRI, PET, and fNIRS	98
5	Desi	gning a Hemodynamic Imaging Experiment	102
	5.1	Think Before You Start an Experiment	103
	5.2	Which Conditions to Include: The Subtraction Method	104
		5.2.1 The Subtraction Method	104
		5.2.2 Considerations about the Subtraction Method	106
	5.3	How to Present the Conditions: The Block Design	108
		5.3.1 The Block Design and the Hemodynamic Response Function	108
		5.3.2 The Block Design in Practice in fMRI and fNIRS	111
		5.3.3 A Few Examples of Classical Studies Using a Block Design	113
	5.4	The Event-Related Design	115
	5.5	The Baseline or Rest Condition	118
		5.5.1 The Role of a Baseline in Task-Based fMRI	118
		5.5.2 Regions Activated during a Resting Baseline	120
	5.6	Task and Stimuli in the Scanner	122
6	Ima	ge Processing	127
	6.1	Software Packages	127
	6.2	Properties of the Images	130

	6.3	Preprocessing Step 1: Slice Timing	131
	6.4	Preprocessing Step 2: Motion Correction	132
	6.5	Preprocessing Step 3: Coregistration	135
	6.6	Preprocessing Step 4: Normalization	137
	6.7	Preprocessing Step 5: Spatial Smoothing	137
7	Basi	c Statistical Analyses	142
	7.1	Statistical Analyses: The General Linear Model	142
		7.1.1 Simple Linear Regression	142
		7.1.2 Multiple Linear Regression	143
		7.1.3 The General Linear Model Applied to fMRI Data	144
		7.1.4 Data Cleaning prior to Applying the GLM	145
		7.1.5 The Efficiency of a Design and Correlation between Predictors	146
	7.2	Determining Significance and Interpreting It	148
		7.2.1 Calculating a Simple Test Statistic: A t-Contrast	148
		7.2.2 Correction for Multiple Comparisons, or How to Avoid	
		Brain Activity in Dead Salmon	151
		7.2.3 Combining Data across Participants: Second-Level Whole-Brain	
		Analyses	154
		7.2.4 Region-of-Interest Analyses	155
		7.2.5 Another Statistical Caveat: Double Dipping and Circular	
		Analyses	157
		7.2.6 Statistical Inference	159
8	Adv	anced Statistical Analyses	163
	8.1	Functional Connectivity: Designs and Analyses	163
		8.1.1 Correlations in Brain Activity	164
		8.1.2 The Interpretation of Correlations in Brain Activity	165
		8.1.3 Modeling Directional Functional Connectivity	168
		8.1.4 Task-Related Modulations of Connectivity	171
		8.1.5 Resting-State fMRI (RS fMRI)	173
	8.2	Multi-voxel Pattern Analyses	176
		8.2.1 A Schematic Tutorial of MVPA	176
		8.2.2 A Specific Example of MVPA	178
		8.2.3 The Potential of MVPA to Move beyond Neophrenology	181
		8.2.4 What Do We Measure with MVPA?	183
	8.3	Functional MRI Adaptation	188
	Part	III Electrophysiological Neuroimaging	191
9	Elec	tromagnetic Field of the Brain	193
	9.1	Electrophysiological Activity of the Brain	194
		9.1.1 From Neurons to Electric Field	194

		9.1.2 Magnetic Field of the Neural Activity	197
		9.1.3 From the Field to Sensors	198
	9.2	Electromagnetic Field Signals	198
		9.2.1 Properties of the Field Signal	200
		9.2.2 Dimensions and Resolution of the Field Signal	204
	9.3	Brain Dynamics vs. Mind Dynamics	206
10	Elec	troencephalography and Magnetoencephalography	209
	10.1	Electroencephalography (EEG)	210
		10.1.1 EEG Electrodes	211
		10.1.2 EEG Amplifier	218
		10.1.3 Procedure for Data Acquisition	219
	10.2	Magnetoencephalography (MEG)	221
		10.2.1 MEG Sensors	222
		10.2.2 Magnetically Shielded Room	226
		10.2.3 Procedure for MEG Data Acquisition	227
	10.3	Comparison between EEG and MEG	228
11	Basi	c Analysis of Electrophysiological Signals	231
	11.1	Preprocessing	232
		11.1.1 Noise	232
		11.1.2 Montage	235
		11.1.3 Segmentation and Visual Inspection	236
		11.1.4 Independent Component Analysis for Preprocessing	236
		11.1.5 Filtering for Preprocessing	238
		11.1.6 Resampling	240
	11.2	Main Signal Processing	241
		11.2.1 Spectral Analysis	241
		11.2.2 Event-Related Potential Analysis	246
	11.3	Statistical Tests	249
12		anced Data Analysis	252
	12.1	Short Time Fourier Transform and Wavelet Transform	252
		12.1.1 Short Time Fourier Transform	252
		12.1.2 Wavelet Transform	255
		12.1.3 STFT or Wavelet?	258
	12.2	Phase Analysis	259
		12.2.1 Computation of the Phase	259
		12.2.2 Phase Synchrony	260
		12.2.3 Network Analysis	262
		12.2.4 Inter-trial Phase Coherence	265
	10 -	12.2.5 Trial Averaging Revisited	267
	12.3	Autoregression and Granger Causality	269

		12.3.1 Autoregression	269
		12.3.2 Granger Causality	271
	Dart	IV Complementary Methods	075
	Fall	IV Complementary Methods	275
13	Multi	-modal Imaging	277
	13.1	The Spatial and Temporal Unfolding of Visual Category	
		Representations	278
	13.2	Simultaneous Application of EEG and fMRI	281
	13.3	M/EEG Source Localization	284
	13.4	Differentiating between Representational and Access Theories of	
		Disorders	286
	13.5	Clinical Diagnostics with Multi-modal Imaging	289
14	Causa	al Methods to Modulate Brain Activity	292
	14.1	Microstimulation and Deep Brain Stimulation	292
	14.2	Focused Ultrasound Stimulation (FUS)	297
	14.3	Transcranial Magnetic Stimulation (TMS)	298
	14.4	Transcranial Current Stimulation (TCS)	303
	Glossary		309
	References		
	Index		